170 research outputs found
3D ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography
The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology
A comparison of constitutive models for describing the flow of uncured styrene-butadiene rubber
Uncured styrene-butadiene rubber (SBR) can be modelled as a viscoelastic material with at least two different relaxation mechanisms. In this paper we compare multi-mode constitutive models combining two viscoelastic modes (linear and/or nonlinear) in three possible ways. Our particular choice of the two modes was inspired by models originally developed to describe the response of asphalt binders. We select the model that best fits the experimental data obtained from a modified stress relaxation experiment in the torsional configuration of the plate-plate rheometer. The optimisation of the five model parameters for each model is achieved by minimising the weighted least-squares distance between experimental observations and the computer model output using a tree-structured Parzen estimator algorithm to find an initial guess, followed by further optimisation using the Nelder-Mead simplex algorithm. The results show that the model combining the linear mode and the nonlinear mode is the most suitable variant to describe the observed behavior of SBR in the given regime. The predictive capabilities of the three models are further examined in changed experimental and numerical configurations. Full data and code to produce the figures in this article are included as supplementary material
Optical and electron microscopy study of laser-based intracellular molecule delivery using peptide-conjugated photodispersible gold nanoparticle agglomerates
Background: Cell-penetrating peptides (CPPs) can act as carriers for therapeutic molecules such as drugs and genetic constructs for medical applications. The triggered release of the molecule into the cytoplasm can be crucial to its effective delivery. Hence, we implemented and characterized laser interaction with defined gold nanoparticle agglomerates conjugated to CPPs which enables efficient endosomal rupture and intracellular release of molecules transported. Results: Gold nanoparticles generated by pulsed laser ablation in liquid were conjugated with CPPs forming agglomerates and the intracellular release of molecules was triggered via pulsed laser irradiation (λ = 532 nm, Ïpulse = 1 ns). The CPPs enhance the uptake of the agglomerates along with the cargo which can be co-incubated with the agglomerates. The interaction of incident laser light with gold nanoparticle agglomerates leads to heat deposition and field enhancement in the vicinity of the particles. This highly precise effect deagglomerates the nanoparticles and disrupts the enclosing endosomal membrane. Transmission electron microscopy images confirmed this rupture for radiant exposures of 25 mJ/cm2 and above. Successful intracellular release was shown using the fluorescent dye calcein. For a radiant exposure of 35 mJ/cm2 we found calcein delivery in 81 % of the treated cells while maintaining a high percentage of cell viability. Furthermore, cell proliferation and metabolic activity were not reduced 72 h after the treatment. Conclusion: CPPs trigger the uptake of the gold nanoparticle agglomerates via endocytosis and co-resident molecules in the endosomes are released by applying laser irradiation, preventing their intraendosomal degradation. Due to the highly localized effect, the cell membrane integrity is not affected. Therefore, this technique can be an efficient tool for spatially and temporally confined intracellular release. The utilization of specifically designed photodispersible gold nanoparticle agglomerates (65 nm) can open novel avenues in imaging and molecule delivery. Due to the induced deagglomeration the primary, small particles (~5 nm) are more likely to be removed from the body.DFG/Ba3580/1
Simulating rapid permafrost degradation and erosion processes under a warming climate
Current model approaches used to simulate the degradation of permafrost under a warming climate are highly simplistic since they only consider one-dimensional (top-down) thawing and ignore lateral processes such as soil erosion and mass wasting which are the most abundant forms of thaw in many regions. Thus, current model assessments are most likely far too conservative in their estimates of permafrost thaw impacts (Rowland & Coon, 2015). It therefore remains uncertain how climate warming and permafrost thaw will affect (i) the intensity of erosion and mass wasting processes and (ii) essential ecosystem functions, landscape characteristics, and infrastructure. It also remains unclear (iii) whether any erosion-induced landscape changes further accelerate permafrost thaw.
In order to answer these critical questions, land surface models (LSMs) require a new level of realism in order to adequately project permafrost thaw dynamics. Within the PermaRisk project, the permafrost model CryoGrid3 is extended with an erosion scheme that allows to represent lateral mass movement processes within the limited framework of one dimensional LSMs. The new model will be applied and validated at three Arctic sites in Alaska, Canada, and northern Siberia. Furthermore, 21st century climate impact projections for the key sites are scheduled as a basis for thorough risk analyses concerning potential damages to critical ecosystem functions/services and infrastructure.
We will present first simulations on rapid permafrost degradation processes with a special focus on thaw slumps at a test site in northern Canada. We expect the results to demonstrate the capabilities and the limitations of the new model
Successful long-term monotherapy with rituximab in a patient with chronic lymphocytic leukemia of the B-cell-lineage: a case report
<p>Abstract</p> <p>Introduction</p> <p>Treatment of chronic lymphocytic leukemia of the B-cell-lineage is strongly based upon clinical staging because of the heterogeneous clinical course of this disease.</p> <p>Case presentation</p> <p>We describe a 62-year-old patient with newly diagnosed chronic lymphocytic leukemia of the B-cell-lineage who did not respond to several chemotherapy regimens including chlorambucil, fludarabine and cyclophosphamide, developing a marked neutropenia and thrombocytopenia with life-threatening infections. Further chemotherapy appeared not feasible because of bone marrow toxicity. The patient was treated with 600 mg/m<sup>2 </sup>rituximab weekly followed by eight courses of biweekly therapy and then by long-term maintenance therapy, achieving almost complete remission of the symptoms and disease control.</p> <p>Conclusion</p> <p>After resistance to standard chemotherapy with chlorambucil and fludarabine, a patient with chronic lymphocytic leukemia of the B-cell-lineage was successfully treated with rituximab.</p
Experimental separation of the onset of slip and sharkskin melt instabilities during the extrusion of silicaâfilled, styreneâbutadiene rubber compounds
The flow curves of polymers often reveal the onset of melt instabilities such as sharkskin, stickâslip, or gross melt fracture, in order of increasing shear rates. The focus of this work lies in the application of the Göttfert sharkskin option to the investigation of flow curves of styrene-butadiene rubber (SBR) compounds. The sharkskin option consists of highly sensitive pressure transducers located inside a slit die of a capillary rheometer. This tool allows the detection of in-situ pressure fluctuation characteristics of different melt instabilities. It is shown that the change of slope of the transition region in the flow curves is only linked to slip. Dynamic Mechanical Analysis (DMA) measurements furthermore show that the shear rate at which the change of slope can be observed shows the same temperature dependency as the viscous and elastic properties of the compounds
Investigation of the Sharkskin melt instability using optical Fourier analysis
An optical method allowing the characterization of melt flow instabilities typically occurring during an extrusion process of polymers and polymer compounds is presented. It is based on a cameraâacquired image of the extruded compound with a reference length scale. Application of image processing and transformation of the calibrated image to the frequency domain yields the magnitude spectrum of the instability. The effectiveness of the before mentioned approach is shown on Styreneâbutadiene rubber (SBR) compounds, covering a wide range of silica filler content, extruded through a Göttfert capillary rheometer. The results of the imageâbased analysis are compared with the results from the sharkskin option, a series of highly sensitive pressure transducers installed inside the rheometer. A simplified version of the code used to produce the optical analysis results is included as supplementary material
Consequences of permafrost degradation for Arctic infrastructure - Bridging the model gap between regional and engineering scales
Infrastructure built on perennially frozen ice-rich ground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk of failure. For better assessing the risk of large-scale future damage to Arctic infrastructure, improved strategies for model-based approaches are urgently needed.
We used the laterally coupled 1D heat conduction model CryoGrid3 to simulate permafrost degradation affected by linear infrastructure. We present a case study of a gravel road built on continuous permafrost (Dalton highway, Alaska) and forced our model under historical and strong future warming conditions (following the RCP8.5 scenario). As expected, the presence of a gravel road in the model leads to higher net heat flux entering the ground compared to a reference run without infrastructure and thus a higher rate of thaw. Further, our results suggest that road failure is likely a consequence of lateral destabilisation due to talik formation in the ground beside the road rather than a direct consequence of a top-down thawing and deepening of the active layer below the road centre. In line with previous studies, we identify enhanced snow accumulation and ponding (both a consequence of infrastructure presence) as key factors for increased soil temperatures and road degradation. Using differing horizontal model resolutions we show that it is possible to capture these key factors and their impact on thawing dynamics with a low number of lateral model units, underlining the potential of our model approach for use in pan-Arctic risk assessments.
Our results suggest a general two-phase behaviour of permafrost degradation: an initial phase of slow and gradual thaw, followed by a strong increase in thawing rates after the exceedance of a critical ground warming. The timing of this transition and the magnitude of thaw rate acceleration differ strongly between undisturbed tundra and infrastructure-affected permafrost ground. Our model results suggest that current model-based approaches which do not explicitly take into account infrastructure in their designs are likely to strongly underestimate the timing of future Arctic infrastructure failure.
By using a laterally coupled 1D model to simulate linear infrastructure, we infer results in line with outcomes from more complex 2D and 3D models, but our model's computational efficiency allows us to account for long-term climate change impacts on infrastructure from permafrost degradation. Our model simulations underline that it is crucial to consider climate warming when planning and constructing infrastructure on permafrost as a transition from a stable to a highly unstable state can well occur within the service lifetime (about 30 years) of such a construction. Such a transition can even be triggered in the coming decade by climate change for infrastructure built on high northern latitude continuous permafrost that displays cold and relatively stable conditions today.publishedVersio
- âŠ