12 research outputs found

    Superstability of Surface Nanobubbles

    Get PDF
    Shock wave induced cavitation experiments and atomic force microscopy measurements of flat polyamide and hydrophobized silicon surfaces immersed in water are performed. It is shown that surface nanobubbles, present on these surfaces, do not act as nucleation sites for cavitation bubbles, in contrast to the expectation. This implies that surface nanobubbles are not just stable under ambient conditions but also under enormous reduction of the liquid pressure down to −6MPa. We denote this feature as superstability.Comment: 5 pages, 2 figure

    Gas Enrichment at Liquid-Wall Interfaces

    Get PDF
    Molecular dynamics simulations of Lennard-Jones systems are performed to study the effects of dissolved gas on liquid-wall and liquid-gas interfaces. Gas enrichment at walls is observed which for hydrophobic walls can exceed more than two orders of magnitude when compared to the gas density in the bulk liquid. As a consequence, the liquid structure close to the wall is considerably modified, leading to an enhanced wall slip. At liquid-gas interfaces gas enrichment is found which reduces the surface tension.Comment: main changes compared to version 1: flow simulations are included as well as different types of gase

    Yang-Lee zeros for a nonequilibrium phase transition

    Full text link
    Equilibrium systems which exhibit a phase transition can be studied by investigating the complex zeros of the partition function. This method, pioneered by Yang and Lee, has been widely used in equilibrium statistical physics. We show that an analogous treatment is possible for a nonequilibrium phase transition into an absorbing state. By investigating the complex zeros of the survival probability of directed percolation processes we demonstrate that the zeros provide information about universal properties. Moreover we identify certain non-trivial points where the survival probability for bond percolation can be computed exactly.Comment: LaTeX, IOP-style, 13 pages, 10 eps figure

    Spreading with immunization in high dimensions

    Full text link
    We investigate a model of epidemic spreading with partial immunization which is controlled by two probabilities, namely, for first infections, p0p_0, and reinfections, pp. When the two probabilities are equal, the model reduces to directed percolation, while for perfect immunization one obtains the general epidemic process belonging to the universality class of dynamical percolation. We focus on the critical behavior in the vicinity of the directed percolation point, especially in high dimensions d>2d>2. It is argued that the clusters of immune sites are compact for d4d\leq 4. This observation implies that a recently introduced scaling argument, suggesting a stretched exponential decay of the survival probability for p=pcp=p_c, p0pcp_0\ll p_c in one spatial dimension, where pcp_c denotes the critical threshold for directed percolation, should apply in any dimension d3d \leq 3 and maybe for d=4d=4 as well. Moreover, we show that the phase transition line, connecting the critical points of directed percolation and of dynamical percolation, terminates in the critical point of directed percolation with vanishing slope for d<4d<4 and with finite slope for d4d\geq 4. Furthermore, an exponent is identified for the temporal correlation length for the case of p=pcp=p_c and p0=pcϵp_0=p_c-\epsilon, ϵ1\epsilon\ll 1, which is different from the exponent ν\nu_\parallel of directed percolation. We also improve numerical estimates of several critical parameters and exponents, especially for dynamical percolation in d=4,5d=4,5.Comment: LaTeX, IOP-style, 18 pages, 9 eps figures, minor changes, additional reference

    Epidemic spreading with immunization and mutations

    Full text link
    The spreading of infectious diseases with and without immunization of individuals can be modeled by stochastic processes that exhibit a transition between an active phase of epidemic spreading and an absorbing phase, where the disease dies out. In nature, however, the transmitted pathogen may also mutate, weakening the effect of immunization. In order to study the influence of mutations, we introduce a model that mimics epidemic spreading with immunization and mutations. The model exhibits a line of continuous phase transitions and includes the general epidemic process (GEP) and directed percolation (DP) as special cases. Restricting to perfect immunization in two spatial dimensions we analyze the phase diagram and study the scaling behavior along the phase transition line as well as in the vicinity of the GEP point. We show that mutations lead generically to a crossover from the GEP to DP. Using standard scaling arguments we also predict the form of the phase transition line close to the GEP point. It turns out that the protection gained by immunization is vitally decreased by the occurrence of mutations.Comment: 9 pages, 13 figure

    Interaction of cavitation bubbles on a wall\ud

    Get PDF
    We report experimental and numerical investigations on the dynamics of the cavitation of bubbles on a solid surface and the interaction between them with the help of controlled cavitation nuclei: hemispherical bubbles are nucleated from hydrophobic microcavities that act as gas traps when the substrate is immersed in water. The expansion of these nuclei is triggered by an impulsive lowering of the liquid pressure. The patterning of the substrate allows us to control the number of bubbles and the distance between them. Each hemispherical bubble experiences the effect of its mirror image. Correspondingly, an isolated hemispherical bubble together with its mirror image behaves like a free spherical bubble, i.e., its dynamics is well described by the Rayleigh-Plesset equation. We employ the setup to study the dynamics of two and more bubbles in a row at controlled and fixed distances from each other. For weak interaction, namely when the maximum size of the bubbles is smaller than the bubble distance, the dynamics of the system is well captured by an extended Rayleigh-Plesset equation, where mutual pressure coupling through sound emission is included. Bubble pairs last longer than an isolated bubble as neighboring bubbles modify the surrounding pressure and screen each other. For strong interaction, obtained by increasing the tensile stress or decreasing the bubble distance, the bubbles eventually flatten and form a liquid film between each other which can rupture, leading to coalescence. The film thinning is inertia dominated. A potential flow boundary integral simulation captures the overall shape evolution of the bubbles, including the formation of jets horizontal to the wall. These horizontal jets are caused by symmetry breaking due to the neighboring bubbles.\u

    Characterization of Nanobubbles on Hydrophobic Surfaces in Water

    Get PDF
    The aim of this paper is to quantitatively characterize the appearance, stability, density, and shape of surface nanobubbles on hydrophobic surfaces under varying conditions such as temperature and temperature variation, gas type and concentration, surfactants, and surface treatment. The method we adopt is atomic force microscopy (AFM) operated in the tapping mode. In particular, we show (i) that nanobubbles can slide along grooves under the influence of the AFM tip, (ii) that nanobubbles can spontaneously form by substrate heating, allowing for a comparison of the surface topology with and without the nanobubble, (iii) that a water temperature increase leads to a drastic increase in the nanobubble density, (iv) that pressurizing the water with CO2 also leads to a larger nanobubble density, but typically to smaller nanobubbles, (v) that alcohol-cleaning of the surface is crucial for the formation of surface nanobubbles, (vi) that adding 2-butanol as surfactant leads to considerably smaller surface nanobubbles, and (vii) that flushing water over alcohol-covered surfaces strongly enhances the formation of surface nanobubbles
    corecore