20,044 research outputs found

    Geodesic systems of tunnels in hyperbolic 3-manifolds

    Full text link
    It is unknown whether an unknotting tunnel is always isotopic to a geodesic in a finite volume hyperbolic 3-manifold. In this paper, we address the generalization of this problem to hyperbolic 3-manifolds admitting tunnel systems. We show that there exist finite volume hyperbolic 3-manifolds with a single cusp, with a system of at least two tunnels, such that all but one of the tunnels come arbitrarily close to self-intersecting. This gives evidence that systems of unknotting tunnels may not be isotopic to geodesics in tunnel number n manifolds. In order to show this result, we prove there is a geometrically finite hyperbolic structure on a (1;n)-compression body with a system of core tunnels such that all but one of the core tunnels self-intersect.Comment: 19 pages, 4 figures. V2 contains minor updates to references and exposition. To appear in Algebr. Geom. Topo

    A correction to the enhanced bottom drag parameterisation of tidal turbines

    Get PDF
    Hydrodynamic modelling is an important tool for the development of tidal stream energy projects. Many hydrodynamic models incorporate the effect of tidal turbines through an enhanced bottom drag. In this paper we show that although for coarse grid resolutions (kilometre scale) the resulting force exerted on the flow agrees well with the theoretical value, the force starts decreasing with decreasing grid sizes when these become smaller than the length scale of the wake recovery. This is because the assumption that the upstream velocity can be approximated by the local model velocity, is no longer valid. Using linear momentum actuator disc theory however, we derive a relationship between these two velocities and formulate a correction to the enhanced bottom drag formulation that consistently applies a force that remains closed to the theoretical value, for all grid sizes down to the turbine scale. In addition, a better understanding of the relation between the model, upstream, and actual turbine velocity, as predicted by actuator disc theory, leads to an improved estimate of the usefully extractable energy. We show how the corrections can be applied (demonstrated here for the models MIKE 21 and Fluidity) by a simple modification of the drag coefficient

    Distributed Exact Shortest Paths in Sublinear Time

    Full text link
    The distributed single-source shortest paths problem is one of the most fundamental and central problems in the message-passing distributed computing. Classical Bellman-Ford algorithm solves it in O(n)O(n) time, where nn is the number of vertices in the input graph GG. Peleg and Rubinovich (FOCS'99) showed a lower bound of Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) for this problem, where DD is the hop-diameter of GG. Whether or not this problem can be solved in o(n)o(n) time when DD is relatively small is a major notorious open question. Despite intensive research \cite{LP13,N14,HKN15,EN16,BKKL16} that yielded near-optimal algorithms for the approximate variant of this problem, no progress was reported for the original problem. In this paper we answer this question in the affirmative. We devise an algorithm that requires O((nlogn)5/6)O((n \log n)^{5/6}) time, for D=O(nlogn)D = O(\sqrt{n \log n}), and O(D1/3(nlogn)2/3)O(D^{1/3} \cdot (n \log n)^{2/3}) time, for larger DD. This running time is sublinear in nn in almost the entire range of parameters, specifically, for D=o(n/log2n)D = o(n/\log^2 n). For the all-pairs shortest paths problem, our algorithm requires O(n5/3log2/3n)O(n^{5/3} \log^{2/3} n) time, regardless of the value of DD. We also devise the first algorithm with non-trivial complexity guarantees for computing exact shortest paths in the multipass semi-streaming model of computation. From the technical viewpoint, our algorithm computes a hopset G"G" of a skeleton graph GG' of GG without first computing GG' itself. We then conduct a Bellman-Ford exploration in GG"G' \cup G", while computing the required edges of GG' on the fly. As a result, our algorithm computes exactly those edges of GG' that it really needs, rather than computing approximately the entire GG'

    Theory of small charge solitons in one-dimensional arrays of Josephson junctions

    Full text link
    We identify and investigate the new parameter regime of small charge solitons in one-dimensional arrays of Josephson junctions. We obtain the dispersion relation of the soliton and show that it unexpectedly flattens in the outer region of the Brillouin zone. We demonstrate Lorentz contraction of the soliton in the middle of the Brillouin zone as well as broadening of the soliton in the flat band regime.Comment: 4 pages, 6 figures, final published versio
    corecore