41 research outputs found
Severe hypercalcemia caused by parathyroid hormone in a rectal cancer metastasis: a case report
Background - Hypercalcemia of malignancy is relatively common in several cancers. However, in colorectal cancer, paraneoplastic phenomena that cause hypercalcemia is uncommon. In the few cases that are reported, secretion of parathyroid hormone-related peptide mediates the effect. We describe the first case of severe hypercalcemia mediated by intact parathyroid hormone secretion from a bone metastasis of colorectal origin. This was a diagnostic and therapeutic challenge.
Case presentation - A 68-year-old male treated for rectal adenocarcinoma 10 years earlier developed a bone metastasis. After initial treatment of the metastasis with surgery and irradiation, he developed a relapse with severe hypercalcemia and corresponding elevated parathyroid hormone levels. The workup showed no signs of parathyroid adenomas, but the metastasis produced intact parathyroid hormone. The hypercalcemia was successfully treated by irradiation and osteoclast inhibitor, and the patient received chemotherapy. Survival was 24 months from the onset of hypercalcemia.
Conclusions - Proper diagnosis of the uncommon endocrine disturbance allowed targeted therapy and avoidance of neck exploration for wrongly suspecting primary hyperparathyroidism. Intact parathyroid hormone should be measured in cases of malignant hypercalcemia
MicroRNA Signatures in Tumor Tissue Related to Angiogenesis in Non-Small Cell Lung Cancer
BACKGROUND: Angiogenesis is regarded as a hallmark in cancer development, and anti-angiogenic treatment is presently used in non-small cell lung cancer (NSCLC) patients. MicroRNAs (miRs) are small non-coding, endogenous, single stranded RNAs that regulate gene expression. In this study we aimed to identify significantly altered miRs related to angiogenesis in NSCLC. METHODS: From a large cohort of 335 NSCLC patients, paraffin-embedded samples from 10 patients with a short disease specific survival (DSS), 10 with a long DSS and 10 normal controls were analyzed. The miRs were quantified by microarray hybridization and selected miRs were validated by real-time qPCR. The impacts of different pathways, including angiogenesis, were evaluated by Gene Set Enrichment Analysis (GSEA) derived from Protein ANalysis THrough Evolutionary Relationship (PANTHER). One of the most interesting candidate markers, miR-155, was validated by in situ hybridization (ISH) in the total cohort (n = 335) and correlation analyses with several well-known angiogenic markers were done. RESULTS: 128 miRs were significantly up- or down-regulated; normal versus long DSS (n = 68) and/or normal versus short DSS (n = 63) and/or long versus short DSS (n = 37). The pathway analysis indicates angiogenesis-related miRs to be involved in NSCLC. There were strong significant correlations between the array hybridization and qPCR validation data. The significantly altered angiogenesis-related miRs of high interest were miR-21, miR-106a, miR-126, miR-155, miR-182, miR-210 and miR-424. miR-155 correlated significantly with fibroblast growth factor 2 (FGF2) in the total cohort (r = 0.17, P = 0.002), though most prominent in the subgroup with nodal metastasis (r = 0.34, P<0.001). CONCLUSIONS: Several angiogenesis-related miRs are significantly altered in NSCLC. Further studies to understand their biological functions and explore their clinical relevance are warranted
Prognostic Impact of MiR-155 in Non-Small Cell Lung Cancer Evaluated by in Situ Hybridization
<p>Abstract</p> <p>Background</p> <p>In recent years, microRNAs (miRNAs) have been found to play an essential role in tumor development. In lung tumorigenesis, targets and pathways of miRNAs are being revealed, and further translational research in this field is warranted. MiR-155 is one of the miRNAs most consistently involved in various neoplastic diseases. We aimed to investigate the prognostic impact of the multifunctional miR-155 in non-small cell lung cancer (NSCLC) patients.</p> <p>Methods</p> <p>Tumor tissue samples from 335 resected stage I to IIIA NSCLC patients were obtained and tissue microarrays (TMAs) were constructed with four cores from each tumor specimen. <it>In situ </it>hybridization (ISH) was used to evaluate the expression of miR-155.</p> <p>Results</p> <p>There were 191 squamous cell carcinomas (SCCs), 95 adenocarcinomas (ACs), 31 large cell carcinomas and 18 bronchioalveolar carcinomas. MiR-155 expression did not have a significant prognostic impact in the total cohort (P = 0.43). In ACs, high miR-155 expression tended to a significant negative prognostic effect on survival in univariate analysis (P = 0.086) and was an independent prognostic factor in multivariate analysis (HR 1.87, CI 95% 1.01 - 3.48, P = 0.047). In SCC patients with lymph node metastasis, however, miR-155 had a positive prognostic impact on survival in univariate (P = 0.034) as well as in multivariate (HR 0.45, CI 95% 0.21-0.96, P = 0.039) analysis.</p> <p>Conclusions</p> <p>The prognostic impact of miR-155 depends on histological subtype and nodal status in NSCLC.</p
Transcription factor PAX6 as a novel prognostic factor and putative tumour suppressor in non-small cell lung cancer
Source at https://doi.org/10.1038/s41598-018-23417-z. Licensed CC BY-NC-ND 4.0.Lung cancer is the leading cause of cancer deaths. Novel predictive biomarkers are needed to improve treatment selection and more accurate prognostication. PAX6 is a transcription factor with a proposed tumour suppressor function. Immunohistochemical staining was performed on tissue microarrays from 335 non-small cell lung cancer (NSCLC) patients for PAX6. Multivariate analyses of clinico-pathological variables and disease-specific survival (DSS) was carried out, and phenotypic changes of two NSCLC cell lines with knockdown of PAX6 were characterized. While PAX6 expression was only associated with a trend of better disease-specific survival (DSS) (p = 0.10), the pN+ subgroup (N = 103) showed significant correlation between high PAX6 expression and longer DSS (p = 0.022). Median survival for pN + patients with high PAX6 expression was 127.4 months, versus 22.9 months for patients with low PAX6 expression. In NCI-H661 cells, knockdown of PAX6 strongly activated serum-stimulated migration. In NCI-H460 cells, PAX6 knockdown activated anchorage-independent growth. We did not observe any significant effect of PAX6 on proliferation in either of cell lines. Our findings strongly support the proposition of PAX6 as a valid and positive prognostic marker in NSCLC in node-positive patients. There is a need for further studies, which should provide mechanistical explanation for the role of PAX6 in NSCLC
Prognostic Impacts of Angiopoietins in NSCLC Tumor Cells and Stroma: VEGF-A Impact Is Strongly Associated with Ang-2
INTRODUCTION: Angiopoietins and their receptor Tie-2 are, in concert with VEGF-A, key mediators in angiogenesis. This study evaluates the prognostic impact of all known human angiopoietins (Ang-1, Ang-2 and Ang-4) and their receptor Tie-2, as well as their relation to the prognostic expression of VEGF-A. METHODS: 335 unselected stage I-IIIA NSCLC-patients were included and tissue samples of respective tumor cells and stroma were collected in tissue microarrays (TMAs). Immunohistochemistry (IHC) was used to semiquantitatively evaluate the expression of markers in duplicate tumor and stroma cores. PRINCIPAL FINDINGS: In univariate analyses, low tumor cell expression of Ang-4 (P = 0.046) and low stromal expressions of Ang-4 (P = 0.009) and Ang-2 (P = 0.017) were individually associated with a poor survival. In the multivariate analysis, low stromal Ang-2 (HR 1.88; CI 95% 1.15-3.08) and Ang-4 (HR 1.47, CI 95% 1.02-2.11, P = 0.04) expressions were independently associated with a poor prognosis. In patients with high tumor cell expression of Ang-2, a concomitantly high tumor VEGF-A expression mediated a dramatic survival reduction (P<0.001). In the multivariate analysis of patients with high Ang-2 expression, high tumor VEGF-A expression appeared an independent poor prognosticator (HR 6.43; CI 95% 2.46-16.8; P<0.001). CONCLUSIONS: In tumor cells, only Ang-4 expression has prognostic impact in NSCLC. In tumor stroma, Ang-4 and Ang-2 are independently associated with survival. The prognostic impact of tumor cell VEGF-A in NSCLC appears strongly associated with a concomitantly high tumor cell expression of Ang-2
High tumor cell expression of microRNA-21 in node positive non-small cell lung cancer predicts a favorable clinical outcome
BACKGROUND: MicroRNA (miR)-21 has been revealed as an oncogene in cancer development, and is one of the miRNAs closely connected to angiogenesis. We aimed to explore the impact of miR-21 expression in both tumor and stromal compartments of non-small cell lung cancer (NSCLC), and correlations between miR-21 and angiogenic protein markers. METHODS: From 335 unselected stage I to IIIA NSCLC carcinomas, duplicate tumor and tumor-associated stromal cores were collected in tissue microarrays (TMAs). In situ hybridization (ISH) was used to detect the expression of miR-21 separately in tumor cells and stromal cells of the tumor, and immunohistochemistry (IHC) was used to detect the expression of the protein markers protein kinase B (Akt), phosphatidylinositol-3-kinase (PI3K), hypoxia induced factor 1 (HIF1α) and vascular endothelial growth factor-A (VEGF-A). RESULTS: In univariate analyses, high tumor cell expression of miR-21 in patients with lymph node metastasis was a positive prognostic factor (P = 0.024). High stromal miR-21 expression had a negative prognostic impact (P = 0.022). In the multivariate analysis, low tumor mir-21 expression in node positive patients was an independent adverse prognostic factor (HR 2.03, CI 95% 1.09-3.78, P = 0.027). CONCLUSIONS: In patients with lymph node metastasis, miR-21 expression in tumor cells is an independent positive prognostic factor. High stromal miR-21 expression is a negative prognostic factor
Stage and tissue-specific prognostic impact of miR-182 in NSCLC
BACKGROUND: MicroRNA (miR)-182 is frequently upregulated in cancers, has generally been viewed as an oncogene and is possibly connected to angiogenesis. We aimed to explore what impact miR-182 has in non-small cell lung cancer (NSCLC), and more explicitly its correlation with angiogenic markers. METHODS: From 335 unselected stage I to IIIA NSCLC carcinomas, duplicate tumor and tumor-associated stromal cores were collected in tissue microarray blocks (TMAs). In situ hybridization (ISH) was used to detect the expression of miR-182 in tumor cells, and immunohistochemistry (IHC) was used to detect the expression of angiogenesis related protein markers. RESULTS: In univariate analyses, high tumor cell expression of miR-182 was a positive prognostic factor for patients with squamous cell carcinoma (SCC, P = 0.042) and stage II patients (P = 0.003). Also in the multivariate analysis, high tumor cell miR-182 expression was associated with a good prognosis in the same groups (SCC: HR 0.57, CI 95% 0.33-0.99, P = 0.048; stage II: HR 0.50, CI 95% 0.28-0.90, P = 0.020). We found significant correlations between miR-182 and the angiogenesis related markers FGF2, HIF2α and MMP-7. CONCLUSION: In patients with SCC and in stage II patients, high tumor cell miR-182 expression is an independent positive prognostic factor