690 research outputs found
Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models
While stochastic volatility models improve on the option pricing error when compared to the Black-Scholes-Merton model, mispricings remain. This paper uses mixed normal heteroskedasticity models to price options. Our model allows for significant negative skewness and time varying higher order moments of the risk neutral distribution. Parameter inference using Gibbs sampling is explained and we detail how to compute risk neutral predictive densities taking into account parameter uncertainty. When forecasting out-of-sample options on the S&P 500 index, substantial improvements are found compared to a benchmark model in terms of dollar losses and the ability to explain the smirk in implied volatilities.Bayesian inference, option pricing, finite mixture models, out-of-sample prediction, GARCH models
Multivariate Option Pricing with Time Varying Volatility and Correlations
In recent years multivariate models for asset returns have received much attention, in particular this is the case for models with time varying volatility. In this paper we consider models of this class and examine their potential when it comes to option pricing. Specifically, we derive the risk neutral dynamics for a general class of multivariate heteroskedastic models, and we provide a feasible way to price options in this framework. Our framework can be used irrespective of the assumed underlying distribution and dynamics, and it nests several important special cases. We provide an application to options on the minimum of two indices. Our results show that not only is correlation important for these options but so is allowing this correlation to be dynamic. Moreover, we show that for the general model exposure to correlation risk carries an important premium, and when this is neglected option prices are estimated with errors. Finally, we show that when neglecting the non-Gaussian features of the data, option prices are also estimated with large errors.Multivariate risk premia, option pricing, GARCH models
Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models
While stochastic volatility models improve on the option pricing error when compared to the Black-Scholes-Merton model, mispricings remain. This paper uses mixed normal heteroskedasticity models to price options. Our model allows for significant negative skewness and time varying higher order moments of the risk neutral distribution. Parameter inference using Gibbs sampling is explained and we detail how to compute risk neutral predictive densities taking into account parameter uncertainty. When forecasting out-of-sample options on the S&P 500 index, substantial improvements are found compared to a benchmark model in terms of dollar losses and the ability to explain the smirk in implied volatilities. Les modèles à volatilité stochastique apportent des améliorations en ce qui a trait à l’erreur d’établissement des prix des options comparativement au modèle de Black-Scholes-Merton. Toutefois, la fixation incorrecte des prix persiste. Le présent document a recours à des modèles mixtes avec hétéroscédasticité normale pour fixer les prix des options. Notre modèle permet de tenir compte de l’asymétrie négative importante et des moments d’ordre élevé variant dans le temps liés à la distribution du risque nul. Nous expliquons l’inférence des paramètres selon l’échantillonnage de Gibbs et détaillons la façon de traiter les densités prédictives de risque neutre en prenant en considération l’incertitude des paramètres. Dans le cas des prévisions concernant les options hors-échantillonnage sur l’indice S&P 500, nous constatons des améliorations importantes, par rapport à un modèle de référence, en termes de pertes exprimées en dollars et de capacité d’expliquer l’ironie des volatilités implicites.Bayesian inference, option pricing, finite mixture models, out-of-sample prediction, GARCH models, Inférence bayésienne, fixation du prix des options, modèles à mélanges finis, prédiction hors-échantillon, modèles GARCH.
Bayesian option pricing using mixed normal heteroskedasticity models
Bayesian inference, option pricing, finite mixture models, out-of-sample prediction, GARCH models
Multivariate option pricing with time varying volatility and correlations
In recent years multivariate models for asset returns have received much attention, in particular this is the case for models with time varying volatility. In this paper we consider models of this class and examine their potential when it comes to option pricing. Specifically, we derive the risk neutral dynamics for a general class of multivariate heteroskedastic models, and we provide a feasible way to price options in this framework. Our framework can be used irrespective of the assumed underlying distribution and dynamics, and it nests several important special cases. We provide an application to options on the minimum of two indices. Our results show that not only is correlation important for these options but so is allowing this correlation to be dynamic. Moreover, we show that for the general model exposure to correlation risk carries an important premium, and when this is neglected option prices are estimated with errors. Finally, we show that when neglecting the non-Gaussian features of the data, option prices are also estimated with large errors.multivariate risk premia, option pricing, GARCH models
Option pricing with asymmetric heteroskedastic normal mixture models
This paper uses asymmetric heteroskedastic normal mixture models to fit return data and to price options. The models can be estimated straightforwardly by maximum likelihood, have high statistical fit when used on S&P 500 index return data, and allow for substantial negative skewness and time varying higher order moments of the risk neutral distribution. When forecasting out-of-sample a large set of index options between 1996 and 2009, substantial improvements are found compared to several benchmark models in terms of dollar losses and the ability to explain the smirk in implied volatilities. Overall, the dollar root mean squared error of the best performing benchmark component model is 39% larger than for the mixture model. When considering the recent financial crisis this difference increases to 69%.asymmetric heteroskadastic models, finite mixture models, option pricing, out-of- sample prediction, statistical fit
- …