2,056 research outputs found

    Variational properties of a pumped dynamical system

    Full text link
    We have earlier constructed a generalized entropy concept to show the direction of time in an evolution following from a Markov generator. In such a dynamical system, the entity found changes in a monotonic way starting from any initial state of the system. In this paper, we generalize the treatment to the case when population is pumped into the system from levels not explicitly considered. These populations then pass through the coupled levels and exit by decay to levels outside the system. We derive the form of the equation of motion and relate it to our earlier treatments. It turns out that the formalism can be generalized to the new situation. Its physically relevant features are demonstrated, and the behaviour obtained is illustrated by numerical treatment of the standard two-level system with pumping and relaxation included.Comment: 10 pages, 2 figure

    Cavity field ensembles from nonselective measurements

    Full text link
    We continue our investigations of cavity QED with time dependent parameters. In this paper we discuss the situation where the state of the atoms leaving the cavity is reduced but the outcome is not recorded. In this case our knowledge is limited to an ensemble description of the results only. By applying the Demkov-Kunike level-crossing model, we show that even in this case, the filtering action of the interaction allows us to prepare a preassigned Fock state with good accuracy. The possibilities and limitations of the method are discussed and some relations to earlier work are presented.Comment: 11 pages, 2 figure

    Transient dynamics of linear quantum amplifiers

    Get PDF
    The transient dynamics of a quantum linear amplifier during the transition from damping to amplification regime is studied. The master equation for the quantized mode of the field is solved, and the solution is used to describe the statistics of the output field. The conditions under which a nonclassical input field may retain nonclassical features at the output of the amplifier are analyzed and compared to the results of earlier theories. As an application we give a dynamical description of the departure of the system from thermal equilibrium.Comment: 10 pages, 6 figures. V2: extended discussion on application

    Photon filters in a microwave cavity

    Full text link
    In an earlier paper we have concluded that time-dependent parameters in atom-mode interaction can be utilized to modify the quantum field in a cavity. When an atom shoots through the cavity field, it is expected to experience a trigonometric time dependence of its coupling constant. We investigate the possibilities this offers to modify the field. As a point of comparison we use the solvable Rosen-Zener model, which has parameter dependencies roughly similar to the ones expected in a real cavity. We do confirm that by repeatedly sending atoms through the cavity, we can obtain filters on the photon states. Highly non-classical states can be obtained. We find that the Rosen-Zener model is more sensitive to the detuning than the case of a trigonometric coupling.Comment: 9 pages, 5 figure
    corecore