291 research outputs found

    Interface-induced magnetism in perovskite quantum wells

    Full text link
    We investigate the angular dependence of the magnetoresistance of thin (< 1 nm), metallic SrTiO3 quantum wells epitaxially embedded in insulating, ferrimagnetic GdTiO3 and insulating, antiferromagnetic SmTiO3, respectively. The SrTiO3 quantum wells contain a high density of mobile electrons (~7x10^14 cm^-2). We show that the longitudinal and transverse magnetoresistance in the structures with GdTiO3 are consistent with anisotropic magnetoresistance, and thus indicative of induced ferromagnetism in the SrTiO3, rather than a nonequilibrium proximity effect. Comparison with the structures with antiferromagnetic SmTiO3 shows that the properties of thin SrTiO3 quantum wells can be tuned to obtain magnetic states that do not exist in the bulk material.Comment: Accepted for publication as a Rapid Communication in Physical Review

    Spontaneous Hall effects in the electron system at the SmTiO3/EuTiO3 interface

    Full text link
    Magnetotransport and magnetism of epitaxial SmTiO3/EuTiO3 heterostructures grown by molecular beam epitaxy are investigated. It is shown that the polar discontinuity at the interface introduces ~ 3.9x10^14 cm^-2 carriers into the EuTiO3. The itinerant carriers exhibit two distinct contributions to the spontaneous Hall effect. The anomalous Hall effect appears despite a very small magnetization, indicating a non-collinear spin structure and the second contribution resembles a topological Hall effect. Qualitative differences exist in the temperature dependence of both Hall effects when compared to uniformly doped EuTiO3. In particular, the topological Hall effect contribution appears at higher temperatures and the anomalous Hall effect shows a sign change with temperature. The results suggest that interfaces can be used to tune topological phenomena in itinerant magnetic systems.Comment: Accepted in APL Material

    Disorder versus two transport lifetimes in a strongly correlated electron liquid

    Get PDF
    We report on angle-dependent measurements of the sheet resistances and Hall coefficients of electron liquids in SmTiO3/SrTiO3/SmTiO3 quantum well structures, which were grown by molecular beam epitaxy on (001) DyScO3. We compare their transport properties with those of similar structures grown on LSAT [(La0.3Sr0.7)(Al0.65Ta0.35)O3]. On DyScO3, planar defects normal to the quantum wells lead to a strong in-plane anisotropy in the transport properties. This allows for quantifying the role of defects in transport. In particular, we investigate differences in the longitudinal and Hall scattering rates, which is a non-Fermi liquid phenomenon known as lifetime separation. The residuals in both the longitudinal resistance and Hall angle were found to depend on the relative orientations of the transport direction to the planar defects. The Hall angle exhibited a robust T2 temperature dependence along all directions, whereas no simple power law could describe the temperature dependence of the longitudinal resistances. Remarkably, the degree of the carrier lifetime separation, as manifested in the distinctly different temperature dependences and diverging residuals near a critical quantum well thickness, was completely insensitive to disorder. The results allow for a clear distinction between disorder-induced contributions to the transport and intrinsic, non-Fermi liquid phenomena, which includes the lifetime separation.Comment: In press, Sci. Re

    Nanoscale Quantification of Octahedral Tilts in Perovskite Films

    Full text link
    NiO6-octahedral tilts in ultrathin LaNiO3 films were studied using position averaged convergent beam electron diffraction (PACBED) in scanning transmission electron microscopy. Both the type and magnitude of the octahedral tilts were determined by comparing PACBED experiments to frozen phonon multislice simulations. It is shown that the out-of-plane octahedral tilt of an epitaxial film under biaxial tensile stress (0.78 % in-plane tensile strain) increases by ~ 20%, while the in-plane rotation decreases by ~ 80%, compared to the unstrained bulk material.Comment: The manuscript has been accepted by Applied Physics Letters. After it is published, it will be found at: http://apl.aip.org

    Growth of strontium ruthenate films by hybrid molecular beam epitaxy

    Full text link
    We report on the growth of epitaxial Sr2RuO4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional MBE that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr2RuO4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.Comment: In press, APL Mate

    Surface Reconstructions in Molecular Beam Epitaxy of SrTiO3

    Full text link
    We show that reflection high-energy electron diffraction (RHEED) can be used as a highly sensitive tool to track surface and resulting film stoichiometry in adsorption-limited molecular beam epitaxy of (001) SrTiO3 thin films. Even under growth conditions that yield films with a lattice parameter that is identical to that of stoichiometric bulk crystals within the detection limit of high-resolution x-ray diffraction (XRD), changes in surface reconstruction occur from (1x1) to (2x1) to c(4x4) as the equivalent beam pressure of the Ti metalorganic source is increased. These surface reconstructions are correlated with a shift from mixed SrO/TiO2 termination to pure TiO2 termination. The crossover to TiO2 surface termination is also apparent in a phase shift in RHEED oscillations observed at the beginning of growth. Comparison with prior results for carrier mobilities of doped films shows that the best films are grown under conditions of a TiO2-saturated surface [c(4x4) reconstruction] within the XRD growth window.Comment: Accepted for publication in Applied Physics Letter
    corecore