16 research outputs found

    Genetic Variants in Arhgef11 Are Associated With Kidney Injury in the Dahl Salt-Sensitive Rat

    Get PDF
    A previous genetic analysis comparing the Dahl salt-sensitive (S) rat to the spontaneously hypertensive rat (SHR) identified a major locus on chromosome 2 that influences proteinuria in the S rat. In the present study, blood pressure, proteinuria, and renal hemodynamics were evaluated in congenic strains with small segments of the protective SHR genome on the S background. Proteinuria and renal function were significantly improved in the congenic strains compared to the S. The causative locus interval was narrowed to Arhgef11, Pear1, and Sh2d2 were identified as important candidate genes that may be linked to kidney injury in the S rat. In particular, Arhgef11 plays an important role in the activation of the Rho-ROCK signaling pathway. Inhibition of this pathway using fasudil resulted in a significant reduction of proteinuria in treated S rats (compared to untreated S). However, no difference was observed between treated or untreated SHR or congenic strains. The homologous region in humans was found to be associated with estimated glomerular filtration rate (eGFR) in the Candidate Gene Association Resource (CARe) population. In summary, these findings demonstrate that allelic variants in Arhgef11, acting through the Rho-ROCK pathway, could influence kidney injury in the S as well as provide insight into human kidney disease

    Heterogeneous stock rats: a new model to study the genetics of renal phenotypes

    No full text
    Chronic kidney disease is a growing medical concern, with an estimated 25.6 million people in the United States exhibiting some degree of kidney injury and/or decline in kidney function. Animal models provide great insight into the study of the genetics of complex diseases. In particular, heterogeneous stock (HS) rats represent a unique genetic resource enabling rapid fine-mapping of complex traits. However, they have not been explored as a model to study renal phenotypes. To evaluate the usefulness of HS rats in the genetics of renal traits, a time course evaluation (weeks 8–40) was performed for several renal phenotypes. As expected, a large degree of variation was seen for most renal traits. By week 24, three (of 40) rats exhibited marked proteinuria that increased gradually until week 40 and ranged from 33.7 to 80.2 mg/24 h. Detailed histological analysis confirmed renal damage in these rats. In addition, several rats consistently exhibited significant hematuria (5/41). Interestingly, these rats were not the same rats that exhibited proteinuria, indicating that susceptibility to different types of kidney injury is likely segregating within the HS population. One HS rat exhibited unilateral renal agenesis (URA), which was accompanied by a significant degree of proteinuria and glomerular and tubulointerstitial injury. The parents of this HS rat were identified and bred further. Additional offspring of this pair were observed to exhibit URA at frequency between 40% and 60%. In summary, these novel data demonstrate that HS rats exhibit variation in proteinuria and other kidney-related traits, confirming that the model harbors susceptibility alleles for kidney injury and providing the basis for further genetic studies

    Genetic Variants in Arhgef11 Are Associated With Kidney Injury in the Dahl Salt-Sensitive Rat

    No full text
    A previous genetic analysis comparing the Dahl salt-sensitive (S) rat to the spontaneously hypertensive rat (SHR) identified a major locus on chromosome 2 that influences proteinuria in the S rat. In the present study, blood pressure, proteinuria, and renal hemodynamics were evaluated in congenic strains with small segments of the protective SHR genome on the S background. Proteinuria and renal function were significantly improved in the congenic strains compared to the S. The causative locus interval was narrowed to Arhgef11, Pear1, and Sh2d2 were identified as important candidate genes that may be linked to kidney injury in the S rat. In particular, Arhgef11 plays an important role in the activation of the Rho-ROCK signaling pathway. Inhibition of this pathway using fasudil resulted in a significant reduction of proteinuria in treated S rats (compared to untreated S). However, no difference was observed between treated or untreated SHR or congenic strains. The homologous region in humans was found to be associated with estimated glomerular filtration rate (eGFR) in the Candidate Gene Association Resource (CARe) population. In summary, these findings demonstrate that allelic variants in Arhgef11, acting through the Rho-ROCK pathway, could influence kidney injury in the S as well as provide insight into human kidney disease

    Extra-uterine renal growth in preterm infants: oligonephropathy and prematurity

    Get PDF
    Background: Nephron number in humans is determined during fetal life. The objective of this study was to investigate the effects of preterm birth on nephron number using renal volume as a surrogate for nephron number. Methods: This observational study was conducted over 12 months in a tertiary perinatal center. Preterm babies less than 32 weeks of gestation were recruited and followed until discharge. Term infants were recruited for comparison. The babies underwent renal sonography and renal function measurements at 32 and 38 weeks corrected age. The primary outcome measurement was total kidney volume at 38 weeks and the secondary outcome was estimated glomerular filtration rate (eGFR). Results: Forty-four preterm infants and 24 term infants were recruited. At 38 weeks corrected age, premature infants had lower total kidney volume than term infants (21.6 ± 5.7 vs. 25.2 ± 5.7 ml; p = 0.02) and a significantly lower eGFR (73.6 [IQR 68.1–77.6] vs. 79.3 [IQR 72.5–86.6] ml·min⁻Âč·1.73 m⁻ÂČ; p = 0.03). There was a significant correlation between total kidney volume and eGFR in premature and term babies. Conclusions: Premature infants have smaller kidney volume and likely decreased nephron number and lower estimated glomerulofiltration rate relative to infants born at term
    corecore