3 research outputs found

    Long-lasting responses with chemotherapy followed by T-cell therapy in recurrent or metastatic EBV-related nasopharyngeal carcinoma

    Get PDF
    BackgroundRefractory or metastatic nasopharyngeal carcinoma (NPC) patients have a poor prognosis due to the lack of effective salvage treatments and prolonged survival by means of combination chemotherapy being described only for a minority of younger patients with oligometastatic disease. Targeting the Epstein - Barr virus (EBV) proteins expressed in NPC cells has been shown to be a feasible strategy that could help control systemic disease.Patients and MethodsBetween 2011 and 2014, 16 patients with recurrent/metastatic EBV-NPC received first-line chemotherapy (CT) followed by 2 doses of autologous cytotoxic EBV specific T-lymphocytes (15-25 x 107 total cells/dose, 2 weeks apart), based on our previous studies showing the feasibility and efficacy of this infusion regimen. Cumulative overall survival (OS) and median OS were analysed in the whole population and according to specific clinical and biological parameters.ResultsAll patients received the planned T-cell therapy schedule, 9 after reaching partial (n=5) or complete (n=4) disease remission with CT, and 7 after failing to obtain benefit from chemotherapy. No severe adverse events were recorded. Patients who received cytotoxic T-lymphocytes (CTLs) had a cumulative 10-year OS of 44%, with a median OS of 60 months (95% CI 42-62). Patients responding to CT, with oligometastatic disease (<3 disease sites), and plasma EBV-DNA <1000 copies/mL had a better outcome.ConclusionsAutologous EBV-specific CTLs transplanted following conventional first-line CT demonstrated promising efficacy with several patients obtaining long-lasting disease control. The rationale provided by this study, with the crucial role likely played by the timing of CTL administration when trying to induce synergy with conventional treatment needs to be confirmed in a prospective controlled trial

    Gluten Exorphins Promote Cell Proliferation through the Activation of Mitogenic and Pro-Survival Pathways

    No full text
    Celiac disease (CD) is a chronic and systemic autoimmune disorder that affects preferentially the small intestine of individuals with a genetic predisposition. CD is promoted by the ingestion of gluten, a storage protein contained in the endosperm of the seeds of wheat, barley, rye, and related cereals. Once in the gastrointestinal (GI) tract, gluten is enzymatically digested with the consequent release of immunomodulatory and cytotoxic peptides, i.e., 33mer and p31-43. In the late 1970s a new group of biologically active peptides, called gluten exorphins (GEs), was discovered and characterized. In particular, these short peptides showed a morphine-like activity and high affinity for the δ-opioid receptor (DOR). The relevance of GEs in the pathogenesis of CD is still unknown. Recently, it has been proposed that GEs could contribute to asymptomatic CD, which is characterized by the absence of symptoms that are typical of this disorder. In the present work, GEs cellular and molecular effects were in vitro investigated in SUP-T1 and Caco-2 cells, also comparing viability effects with human normal primary lymphocytes. As a result, GEs treatments increased tumor cell proliferation by cell cycle and Cyclins activation as well as by induction of mitogenic and pro-survival pathways. Finally, a computational model of GEs interaction with DOR is provided. Altogether, the results might suggest a possible role of GEs in CD pathogenesis and on its associated cancer comorbidities
    corecore