2 research outputs found

    Comparative Study of PEGylated and Conventional Liposomes as Carriers for Shikonin

    No full text
    Liposomes are considered to be one of the most successful drug delivery systems. They apply nanotechnology to potentiate the therapeutic efficacy and reduce the toxicity of conventional medicines. Shikonin and alkannin, a pair of chiral natural naphthoquinone compounds, derived from Alkanna and Lithospermum species, are widely used due to their various pharmacological activities, mainly wound healing, antioxidant, anti-inflammatory and their recently established antitumor activity. The purpose of this study was to prepare conventional and PEGylated shikonin-loaded liposomal formulations and measure the effects of different lipids and polyethylene glycol (PEG) on parameters related to particle size distribution, the polydispersity index, the zeta potential, drug-loading efficiency and the stability of the prepared formulations. Three types of lipids were assessed (1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DSPG)), separately and in mixtures, forming anionic liposomes with good physicochemical characteristics, high entrapment efficiencies (varying from 56.5 to 89.4%), satisfactory in vitro release profiles and good physical stability. The addition of the negatively charged DSPG lipids to DOPC, led to an increment in the drug’s incorporation efficiency and reduced the particle size distribution. Furthermore, the shikonin–loaded PEGylated sample with DOPC/DSPG, demonstrated the most satisfactory characteristics. These findings are considered promising and could be used for further design and improvement of such formulations
    corecore