447 research outputs found
Renal screening in children after exposure to low dose melamine in Hong Kong: cross sectional study
Objective To investigate the renal outcomes of children after exposure to low dose melamine in Hong Kong
Swings between rotation and accretion power in a millisecond binary pulsar
It is thought that neutron stars in low-mass binary systems can accrete
matter and angular momentum from the companion star and be spun-up to
millisecond rotational periods. During the accretion stage, the system is
called a low-mass X-ray binary, and bright X-ray emission is observed. When the
rate of mass transfer decreases in the later evolutionary stages, these
binaries host a radio millisecond pulsar whose emission is powered by the
neutron star's rotating magnetic field. This evolutionary model is supported by
the detection of millisecond X-ray pulsations from several accreting neutron
stars and also by the evidence for a past accretion disc in a rotation-powered
millisecond pulsar. It has been proposed that a rotation-powered pulsar may
temporarily switch on during periods of low mass inflow in some such systems.
Only indirect evidence for this transition has hitherto been observed. Here we
report observations of accretion-powered, millisecond X-ray pulsations from a
neutron star previously seen as a rotation-powered radio pulsar. Within a few
days after a month-long X-ray outburst, radio pulses were again detected. This
not only shows the evolutionary link between accretion and rotation-powered
millisecond pulsars, but also that some systems can swing between the two
states on very short timescales.Comment: 43 pages, 9 figures, 4 table. Published by Nature on 26 Sep 2013.
Includes Supplementary information. Minor differences with published version
may exis
Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis
Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites <i>Trypanosoma brucei</i> (<i>T.b.</i>) <i>gambiense</i> or <i>T.b.rhodesiense</i> and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only currently available treatment for CNS-stage <i>T.b.rhodesiense</i> infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-͎-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties <i>in vitro</i> and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy
Patients with treated indolent lymphomas immunized with BNT162b2 have reduced anti-spike neutralizing IgG to SARS-CoV-2 variants, but preserved antigen-specific T cell responses
Patients with indolent lymphoma undertaking recurrent or continuous B cell suppression are at risk of severe COVID-19. Patients and healthy controls (HC; N = 13) received two doses of BNT162b2: follicular lymphoma (FL; N = 35) who were treatment naïve (TN; N = 11) or received immunochemotherapy (ICT; N = 23) and Waldenström's macroglobulinemia (WM; N = 37) including TN (N = 9), ICT (N = 14), or treated with Bruton's tyrosine kinase inhibitors (BTKi; N = 12). Anti-spike immunoglobulin G (IgG) was determined by a high-sensitivity flow-cytometric assay, in addition to live-virus neutralization. Antigen-specific T cells were identified by coexpression of CD69/CD137 and CD25/CD134 on T cells. A subgroup (N = 29) were assessed for third mRNA vaccine response, including omicron neutralization. One month after second BNT162b2, median anti-spike IgG mean fluorescence intensity (MFI) in FL ICT patients (9977) was 25-fold lower than TN (245 898) and HC (228 255, p =.0002 for both). Anti-spike IgG correlated with lymphocyte count (r =.63; p =.002), and time from treatment (r =.56; p =.007), on univariate analysis, but only with lymphocyte count on multivariate analysis (p =.03). In the WM cohort, median anti-spike IgG MFI in BTKi patients (39 039) was reduced compared to TN (220 645, p =.0008) and HC (p <.0001). Anti-spike IgG correlated with neutralization of the delta variant (r =.62, p <.0001). Median neutralization titer for WM BTKi (0) was lower than HC (40, p <.0001) for early-clade and delta. All cohorts had functional T cell responses. Median anti-spike IgG decreased 4-fold from second to third dose (p =.004). Only 5 of 29 poor initial responders assessed after third vaccination demonstrated seroconversion and improvement in neutralization activity, including to the omicron variant
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Mutations in the 3'-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD)
<p>Abstract</p> <p>Background</p> <p>The 3'-untranslated region (3'-UTR) of mRNA contains regulatory elements that are essential for the appropriate expression of many genes. These regulatory elements are involved in the control of nuclear transport, polyadenylation status, subcellular targetting as well as rates of translation and degradation of mRNA. Indeed, 3'-UTR mutations have been associated with disease, but frequently this region is not analyzed. To gain insights into congenital heart disease (CHD), we have been analyzing cardiac-specific transcription factor genes, including <it>GATA4</it>, which encodes a zinc finger transcription factor. Germline mutations in the coding region of <it>GATA4 </it>have been associated with septation defects of the human heart, but mutations are rather rare. Previously, we identified 19 somatically-derived zinc finger mutations in diseased tissues of malformed hearts. We now continued our search in the 609 bp 3'-UTR region of <it>GATA4 </it>to explore further molecular avenues leading to CHD.</p> <p>Methods</p> <p>By direct sequencing, we analyzed the 3'-UTR of <it>GATA4 </it>in DNA isolated from 68 formalin-fixed explanted hearts with complex cardiac malformations encompassing ventricular, atrial, and atrioventricular septal defects. We also analyzed blood samples of 12 patients with CHD and 100 unrelated healthy individuals.</p> <p>Results</p> <p>We identified germline and somatic mutations in the 3'-UTR of <it>GATA4</it>. In the malformed hearts, we found nine frequently occurring sequence alterations and six dbSNPs in the 3'-UTR region of <it>GATA4</it>. Seven of these mutations are predicted to affect RNA folding. We also found further five nonsynonymous mutations in exons 6 and 7 of <it>GATA4</it>. Except for the dbSNPs, analysis of tissue distal to the septation defect failed to detect sequence variations in the same donor, thus suggesting somatic origin and mosaicism of mutations. In a family, we observed c.+119A > T in the 3'-UTR associated with ASD type II.</p> <p>Conclusion</p> <p>Our results suggest that somatic <it>GATA4 </it>mutations in the 3'-UTR may provide an additional molecular rationale for CHD.</p
- …