3 research outputs found

    Evaluation of Semi-Analytical Algorithms to Retrieve Particulate and Dissolved Absorption Coefficients in Gulf of California Optically Complex Waters

    No full text
    Two semi-analytical algorithms, Generalized Inherent Optical Property (GIOP) and Garver-Siegel-Maritorena (GSM), were evaluated in terms of how well they reproduced the absorption coefficient of phytoplankton (aph(λ)) and dissolved and detrital organic matter (adg(λ)) at three wavelengths (λ of 412, 443, and 488 nm) in a zone with optically complex waters, the Upper Gulf of California (UGC) and the Northern Gulf of California (NGC). In the UGC, detritus determines most of the total light absorption, whereas, in the NGC, chromophoric dissolved organic material (CDOM) and phytoplankton dominate. Upon comparing the results of each model with a database assembled from four cruises done from spring to summer (March through September) between 2011 and 2013, it was found that GIOP is a better estimator for aph(λ) than GSM, independently of the region. However, both algorithms underestimate in situ values in the NGC, whereas they overestimate them in the UGC. Errors are associated with the following: (a) the constant a*ph(λ) value used by GSM and GIOP (0.055 m2 mgChla−1) is higher than the most frequent value observed in this study’s data (0.03 m2 mgChla−1), and (b) satellite-derived chlorophyll a concentration (Chla) is biased high compared with in situ Chla. GIOP gave also better results for the adg(λ) estimation than GSM, especially in the NGC. The spectral slope Sdg was identified as an important parameter for estimating adg(λ), and this study’s results indicated that the use of a fixed input value in models was not adequate. The evaluation confirms the lack of generality of algorithms like GIOP and GSM, whose reflectance model is too simplified to capture expected variability. Finally, a greater monitoring effort is suggested in the study area regarding the collection of in situ reflectance data, which would allow explaining the effects that detritus and CDOM may have on the semi-analytical reflectance inversions, as well as isolating the possible influence of the atmosphere on the satellite-derived water reflectance and Chla

    Spatio-Temporal Variability of Chlorophyll-A and Environmental Variables in the Panama Bight

    No full text
    The analysis of synoptic satellite data of total chlorophyll-a (Chl-a) and the environmental drivers that influence nutrient and light availability for phytoplankton growth allows us to understand the spatio-temporal variability of phytoplankton biomass. In the Panama Bight Tropical region (PB; 1–9°N, 79–84°W), the spatial distribution of Chl-a is mostly related to the seasonal wind patterns and the intensity of localized upwelling centers. However, the association between the Chl-a and different physical variables and nutrient availability is still not fully assessed. In this study, we evaluate the relationship between the Chl-a and multiple physical (wind, Ekman pumping, geostrophic circulation, mixed layer depth, sea level anomalies, river discharges, sea surface temperature, and photosynthetically available radiation) and chemical (nutrients) drivers in order to explain the spatio-temporal Chl-a variability in the PB. We used satellite data of Chl-a and physical variables, and a re-analysis of a biogeochemical product for nutrients (2002–2016). Our results show that at the regional scale, the Chl-a varies seasonally in response to the wind forcing and sea surface temperature. However, in the coastal areas (mainly Gulf of Panama and off central-southern Colombia), the maximum non-seasonal Chl-a values are found in association with the availability of nutrients by river discharges, localized upwelling centers and the geostrophic circulation field. From this study, we infer that the interplay among these physical-chemical drivers is crucial for supporting the phytoplankton growth and the high biodiversity of the PB region
    corecore