8 research outputs found

    Detecting Apnea/Hypopnea Events Time Location from Sound Recordings for Patients with Severe or Moderate Sleep Apnea Syndrome

    No full text
    The most common index for diagnosing Sleep Apnea Syndrome (SAS) is the Apnea-Hypopnea Index (AHI), defined as the average count of apnea/hypopnea events per sleeping hour. Despite its broad use in automated systems for SAS severity estimation, researchers now focus on individual event time detection rather than the insufficient classification of the patient in SAS severity groups. Towards this direction, in this work, we aim at the detection of the exact time location of apnea/hypopnea events. We particularly examine the hypothesis of employing a standard Voice Activity Detection (VAD) algorithm to extract breathing segments during sleep and identify the respiratory events from severely altered breathing amplitude within the event. The algorithm, which is tested only in severe and moderate patients, is applied to recordings from a tracheal and an ambient microphone. It proves good sensitivity for apneas, reaching 81% and 70.4% for the two microphones, respectively, and moderate sensitivity to hypopneas—approx. 50% were identified. The algorithm also presents an adequate estimator of the Mean Apnea Duration index—defined as the average duration of the detected events—for patients with severe or moderate apnea, with mean error 1.7 s and 3.2 s for the two microphones, respectively

    Deep Self-Organizing Map of Convolutional Layers for Clustering and Visualizing Image Data

    No full text
    The self-organizing convolutional map (SOCOM) hybridizes convolutional neural networks, self-organizing maps, and gradient backpropagation optimization into a novel integrated unsupervised deep learning model. SOCOM structurally combines, architecturally stacks, and algorithmically fuses its deep/unsupervised learning components. The higher-level representations produced by its underlying convolutional deep architecture are embedded in its topologically ordered neural map output. The ensuing unsupervised clustering and visualization operations reflect the model’s degree of synergy between its building blocks and synopsize its range of applications. Clustering results are reported on the STL-10 benchmark dataset coupled with the devised neural map visualizations. The series of conducted experiments utilize a deep VGG-based SOCOM model

    Conformal Patch Antenna Arrays Design for Onboard Ship Deployment Using Genetic Algorithms

    No full text
    Conformal antennas and antenna arrays (arrays) have become necessary for vehicular communications where a high degree of aerodynamic drag reduction is needed, like in avionics and ships. However, the necessity to conform to a predefined shape (e.g., of an aircraft’s nose) directly affects antenna performance since it imposes strict constraints to the antenna array’s shape, element spacing, relative signal phase, and so forth. Thereupon, it is necessary to investigate counterintuitive and arbitrary antenna shapes in order to compensate for these constraints. Since there does not exist any available theoretical frame for designing and developing arbitrary-shape antennas in a straightforward manner, we have developed a platform combining a genetic algorithm-based design, optimization suite, and an electromagnetic simulator for designing patch antennas with a shape that is not a priori known (the genetic algorithm optimizes the shape of the patch antenna). The proposed platform is further enhanced by the ability to design and optimize antenna arrays and is intended to be used for the design of a series of antennas including conformal antennas for shipping applications. The flexibility and performance of the proposed platform are demonstrated herein via the design of a high-performance GPS patch antenna
    corecore