5 research outputs found

    Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring.

    Get PDF
    We aimed to test for feasibility of volume-rendered optical coherence tomography angiography (OCTA) as a novel method for assessing/quantifying retinal vasculature during ocular procedures and to explore the potential for intraoperative use. Thirty patients undergoing periocular anaesthesia were enrolled, since published evidence suggests a reduction in ocular blood flow. Retinal perfusion was monitored based on planar OCTA image-derived data provided by a standard quantification algorithm and postprocessed/volume-rendered OCTA data using a custom software script. Overall, imaging procedures were successful, yet imaging artifacts occurred frequently. In interventional eyes, perfusion parameters decreased during anaesthesia. Planar image-derived and volume rendering-derived parameters were correlated. No correlation was found between perfusion parameters and a motion artifact score developed for this study, yet all perfusion parameters correlated with signal strength as displayed by the device. Concluding, volume-rendered OCTA allows for noninvasive three-dimensional retinal vasculature assessment/quantification in challenging surgical settings and appears generally feasible for intraoperative use

    A phase I vaccination study with tyrosinase in patients with stage II melanoma using recombinant modified vaccinia virus Ankara (MVA-hTyr)

    No full text
    A significant percentage of patients with stage II melanomas suffer a relapse after surgery and therefore need the development of adjuvant therapies. In the study reported here, safety and immunological response were analyzed after vaccination in an adjuvant setting with recombinant modified vaccinia virus Ankara carrying the cDNA for human tyrosinase (MVA-hTyr). A total of 20 patients were included and vaccinated three times at 4-week intervals with 5x10(8) IU of MVA-hTyr each time. The responses to the viral vector, to known HLA class I-restricted tyrosinase peptides, and to dendritic cells transfected with tyrosinase mRNA, were investigated by ELISpot assay on both ex vivo T cells and on T cells stimulated in vitro prior to testing. The delivery of MVA-hTyr was safe and did not cause any side effects above grade 2. A strong response to the viral vector was achieved, indicated by an increase in the frequency of MVA-specific CD4+ and CD8+ T cells and an increase in virus-specific antibody titers. However, no tyrosinase-specific T-cell or antibody response was observed with MVA-hTyr in any of the vaccinated patients. Although MVA-hTyr provides a safe and effective antigen-delivery system, it does not elicit a measurable immune response to its transgene product in patients with stage II melanoma after repeated combined intradermal and subcutaneous vaccination. We presume that modification of the antigen and/or prime-boost vaccination applying different approaches to antigen delivery may be required to induce an effective tyrosinase-specific immune respons
    corecore