135 research outputs found

    Dendritic Cells as Adjuvants for Immune-mediated Resistance to Tumors

    Get PDF
    [No abstract available

    Temporal coordination of the human head and eye during a natural sequential tapping task

    Get PDF
    AbstractThe ‘natural’ temporal coordination of head and eye was examined as four subjects tapped a sequence of targets arranged in 3D on a worktable in front of them. The head started to move before the eye 48% of the time. Both the head and eye started to move ‘simultaneously’ (within 8 ms of each other) 37% of the time. The eye started to move before the eye only 15% of the time. Gaze-shifts required to perform the tapping task were relatively large, 68% of them were between 27° and 57°. Gaze-shifts were symmetrical. There were almost as many lefts as rights. Very little inter- or intra-subject variability was observed. These results were not expected on the basis of prior studies of head/eye coordination performed under less natural conditions. They also were not expected given the results of two rather similar, relatively natural, prior experiments. We conclude that more observations under natural conditions will have to be made before we understand why, when and how human beings coordinate head and eyes as they perform everyday tasks in the work-a-day world

    Voluntary binocular gaze-shifts in the plane of regard: Dynamics of version and vergence

    Get PDF
    We studied the dynamics of voluntary, horizontal, binocular gaze-shifts between pairs of continuously visible, real three-dimensional targets. Subjects were stabilized on a biteboard to allow full control of target angles, which were made to differ only in distance (pure vergence), only in direction (pure version; conjugate saccades) or in both distance and direction (disjunctive saccades). A wide range of changes in vergence (0-25 deg) and version (0-65 deg) was recorded to study the dynamics of disjunctive saccades, described until now for limited ranges, throughout the horizontal oculomotor range within manual working space, and to study the velocity-duration-amplitude relations ("main sequence") of disjunctive vs conjugate saccades. Pure vergence was almost never observed; divergence, especially, was always associated with saccades. Likewise, horizontal saccades were never strictly conjugate, they always contained a transient divergence-convergence sequence. The amplitude and velocity of these transient components varied systematically with saccadic size. In combined version-vergence movements, vergence was, in general, accelerated and shortened as a function of increasing version. This effect was fairly uniform for divergence, which appeared to increase in velocity by about as much as the transient peak divergent velocity of the version saccade. The intrasaccadic fraction of divergence increased from about 50% to close to 100% as a function of increasing version. For convergence, saccades up to about 20 deg were also accelerating; in this case it appeared as if the transient peak convergent velocity of the version saccade was added to the basic convergence velocity. For larger saccades this effect was partly counteracted by the penetration of an initial divergence associated with the saccade. This initial divergence delayed and slowed down convergence. The intrasaccadic fraction of convergence varied between about 40% and 70%. In disjunctive saccades the individual eyes did not follow the main-sequence parameters of conjugate saccades of comparable sizes, except for the eye that moved with the combination "abduction and divergence". For all other combinations of vergence and version, disjunctive saccades had lower peak velocities and longer durations than conjugate saccades. As a consequence, disjunctive version was also slower than conjugate version. Thus, while version accelerates vergence, vergence slows down version: in the generalized case of three-dimensional gaze-shifts, peak velocities and durations are in between those of the limiting cases of pure version and pure vergence. We conclude that, within manual working space, binocular gaze-shifts are effected by the highly integrated action of conjugate and disjunctive mechanisms, both of which are expressed preferentially in fast, saccadic movements

    The function of visual search and memory in sequential looking tasks

    Get PDF
    Eye and head movements were recorded as unrestrained subjects tapped or only looked at nearby targets. Scanning patterns were the same in both tasks: subjects looked at each target before tapping it; visual search had similar speeds and gaze-shift accuracies. Looking however, took longer and, unlike tapping, benefitted little from practice. Looking speeded up more than tapping when memory load was reduced: memory was more efficient during tapping. Conclusion: eye movements made when only looking are different from those made when tapping. Visual search functions as a separate process, incorporated into both tasks: it can be used to improve performance when memory load is heavy

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    Human dendritic cells activate resting Natural Killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells.

    No full text
    • …
    corecore