1,144 research outputs found

    Supermassive Black Holes from Ultra-Strongly Self-Interacting Dark Matter

    Get PDF
    We consider the cosmological consequences if a small fraction (f≲0.1f\lesssim 0.1) of the dark matter is ultra-strongly self-interacting, with an elastic self-interaction cross-section per unit mass σ≫1 cm2/g\sigma\gg1\ \mathrm{cm^{2}/g}. This possibility evades all current constraints that assume that the self-interacting component makes up the majority of the dark matter. Nevertheless, even a small fraction of ultra-strongly self-interacting dark matter (uSIDM) can have observable consequences on astrophysical scales. In particular, the uSIDM subcomponent can undergo gravothermal collapse and form seed black holes in the center of a halo. These seed black holes, which form within several hundred halo interaction times, contain a few percent of the total uSIDM mass in the halo. For reasonable values of σf\sigma f, these black holes can form at high enough redshifts to grow to ∼109M⊙\sim10^9 M_\odot quasars by z≳6z \gtrsim 6, alleviating tension within the standard Λ\LambdaCDM cosmology. The ubiquitous formation of central black holes in halos could also create cores in dwarf galaxies by ejecting matter during binary black hole mergers, potentially resolving the "too big to fail" problem.Comment: submitted to Ap

    The mystery of the cosmic vacuum energy density and the accelerated expansion of the Universe

    Get PDF
    After a short history of the Λ\Lambda-term it is explained why the (effective) cosmological constant is expected to obtain contributions from short-distance-physics, corresponding to an energy scale of at least 100 GeV. The actual tiny value of the cosmological constant in any natural scale of units represents, therefore, one of the deepest mysteries of present day fundamental physics. We also briefly discuss recent astronomical evidence for a cosmologically significant vacuum energy density causing an accelerating expansion of the universe. This arises mainly from the Hubble diagram of type Ia supernovae and from the observed temperature fluctuations of the cosmic microwave background radiation. If this should become an established fact, we are also confronted with a disturbing {\it cosmic coincidence} problem.Comment: 12 pages, 2 figures, iopart macros include

    Preventing eternality in phantom inflation

    Full text link
    We have investigated the necessary conditions that prevent phantom inflation from being eternal. Allowing additionally for a nonminimal coupling between the phantom field and gravity, we present the slow-climb requirements, perform an analysis of the fluctuations, and finally we extract the overall conditions that are necessary in order to prevent eternality. Furthermore, we verify our results by solving explicitly the cosmological equations in a simple example of an exponential potential, formulating the classical motion plus the stochastic effect of the fluctuations through Langevin equations. Our analysis shows that phantom inflation can be finite without the need of additional exotic mechanisms.Comment: 8 pages, V2 references added. V3 version published in Phys. Rev.

    Halo Properties in Cosmological Simulations of Self-Interacting Cold Dark Matter

    Full text link
    We present a comparison of halo properties in cosmological simulations of collisionless cold dark matter (CDM) and self-interacting dark matter (SIDM) for a range of dark matter cross sections. We find, in agreement with various authors, that CDM yields cuspy halos that are too centrally concentrated as compared to observations. Conversely, SIDM simulations using a Monte Carlo N-body technique produce halos with significantly reduced central densities and flatter cores with increasing cross section. We introduce a concentration parameter based on enclosed mass that we expect will be straightforward to determine observationally, unlike that of Navarro, Frenk & White, and provide predictions for SIDM and CDM. SIDM also produces more spherical halos than CDM, providing possibly the strongest observational test of SIDM. We discuss our findings in relation to various relevant observations as well as SIDM simulations of other groups. Taking proper account of simulation limitations, we find that a dark matter cross section per unit mass of sigma_DM ~= 10^{-23}-10^{-24} cm^2/GeV is consistent with all current observational constraints.Comment: 14 pages, submitted to Ap

    A smooth bouncing cosmology with scale invariant spectrum

    Full text link
    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n_S >~ 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling.Comment: 20 pages, 1 fig. v2: references added, JCAP published versio

    Optical Absorption Characteristics of Silicon Nanowires for Photovoltaic Applications

    Get PDF
    Solar cells have generated a lot of interest as a potential source of clean renewable energy for the future. However a big bottleneck in wide scale deployment of these energy sources remain the low efficiency of these conversion devices. Recently the use of nanostructures and the strategy of quantum confinement have been as a general approach towards better charge carrier generation and capture. In this article we have presented calculations on the optical characteristics of nanowires made out of Silicon. Our calculations show these nanowires form excellent optoelectronic materials and may yield efficient photovoltaic devices

    Ekpyrotic collapse with multiple fields

    Get PDF
    A scale invariant spectrum of isocurvature perturbations is generated during collapse in the scaling solution in models where two or more fields have steep negative exponential potentials. The scale invariance of the spectrum is realised by a tachyonic instability in the isocurvature field. We show that this instability is due to the fact that the scaling solution is a saddle point in the phase space. The late time attractor is identified with a single field dominated ekpyrotic collapse in which a steep blue spectrum for isocurvature perturbations is found. Although quantum fluctuations do not necessarily to disrupt the classical solution, an additional preceding stage is required to establish classical homogeneity.Comment: 13 pages, 1 figur
    • …
    corecore