96 research outputs found
Stability of the lattice formed in first-order phase transitions to matter containing strangeness in protoneutron stars
Well into the deleptonization phase of a core collapse supernova, a
first-order phase transition to matter with macroscopic strangeness content is
assumed to occur and lead to a structured lattice defined by negatively charged
strange droplets. The lattice is shown to crystallize for expected droplet
charges and separations at temperatures typically obtained during the
protoneutronstar evolution. The melting curve of the lattice for small
spherical droplets is presented. The one-component plasma model proves to be an
adequate description for the lattice in its solid phase with deformation modes
freezing out around the melting temperature. The mechanical stability against
shear stresses is such that velocities predicted for convective phenomena and
differential rotation during the Kelvin-Helmholtz cooling phase might prevent
the crystallization of the phase transition lattice. A solid lattice might be
fractured by transient convection, which could result in anisotropic neutrino
transport. The melting curve of the lattice is relevant for the mechanical
evolution of the protoneutronstar and therefore should be included in future
hydrodynamics simulations.Comment: accepted for publication in Physical Review
Warm stellar matter with deconfinement: application to compact stars
We investigate the properties of mixed stars formed by hadronic and quark
matter in -equilibrium described by appropriate equations of state (EOS)
in the framework of relativistic mean-field theory. We use the non- linear
Walecka model for the hadron matter and the MIT Bag and the Nambu-Jona-Lasinio
models for the quark matter. The phase transition to a deconfined quark phase
is investigated. In particular, we study the dependence of the onset of a mixed
phase and a pure quark phase on the hyperon couplings, quark model and
properties of the hadronic model. We calculate the strangeness fraction with
baryonic density for the different EOS. With the NJL model the strangeness
content in the mixed phase decreases. The calculations were performed for T=0
and for finite temperatures in order to describe neutron and proto-neutron
stars. The star properties are discussed. Both the Bag model and the NJL model
predict a mixed phase in the interior of the star. Maximum allowed masses for
proto-neutron stars are larger for the NJL model ( M)
than for the Bag model ( M).Comment: RevTeX,14 figures, accepted to publication in Physical Review
Small, Dense Quark Stars from Perturbative QCD
As a model for nonideal behavior in the equation of state of QCD at high
density, we consider cold quark matter in perturbation theory. To second order
in the strong coupling constant, , the results depend sensitively on
the choice of the renormalization mass scale. Certain choices of this scale
correspond to a strongly first order chiral transition, and generate quark
stars with maximum masses and radii approximately half that of ordinary neutron
stars. At the center of these stars, quarks are essentially massless.Comment: ReVTeX, 5 pages, 3 figure
The importance of the mixed phase in hybrid stars built with the Nambu-Jona-Lasinio model
We investigate the structure of hybrid stars based on two different
constructions: one is based on the Gibbs condition for phase coexistence and
considers the existence of a mixed phase (MP), and the other is based on the
Maxwell construction and no mixed phase is obtained. The hadron phase is
described by the non-linear Walecka model (NLW) and the quark phase by the
Nambu-Jona-Lasinio model (NJL). We conclude that the masses and radii obtained
are model dependent but not significantly different for both constructions.Comment: 8 pages, 7 figures, 3 table
Nonextensive statistical effects in protoneutron stars
We investigate the bulk properties of protoneutron stars in the framework of
a relativistic mean field theory based on nonextensive statistical mechanics,
characterized by power-law quantum distributions. We study the relevance of
nonextensive statistical effects on the beta-stable equation of state at fixed
entropy per baryon, in presence and in absence of trapped neutrinos, for
nucleonic and hyperonic matter. We show that nonextensive statistical effects
could play a crucial role in the structure and in the evolution of the
protoneutron stars also for small deviations from the standard Boltzmann-Gibbs
statistics.Comment: 9 pages, 7 figure
Color superconducting quark matter core in the third family of compact stars
We investigate first order phase transitions from -equilibrated
hadronic matter to color flavor locked quark matter in compact star interior.
The hadronic phase including hyperons and Bose-Einstein condensate of
mesons is described by the relativistic field theoretical model with density
dependent meson-baryon couplings. The early appearance of hyperons and/or
Bose-Einstein condensate of mesons delays the onset of phase transition
to higher density. In the presence of hyperons and/or condensate, the
overall equations of state become softer resulting in smaller maximum masses
than the cases without hyperons and condensate. We find that the maximum
mass neutron stars may contain a mixed phase core of hyperons, condensate
and color superconducting quark matter. Depending on the parameter space, we
also observe that there is a stable branch of superdense stars called the third
family branch beyond the neutron star branch. Compact stars in the third family
branch may contain pure color superconducting core and have radii smaller than
those of the neutron star branch. Our results are compared with the recent
observations on RX J185635-3754 and the recently measured mass-radius
relationship by X-ray Multi Mirror-Newton Observatory.Comment: 24 pages, RevTex, 9 figures included; section II shortened, section
III elaborated, two new curves in Fig. 9 and acknowledgements added; version
to bepublished in Phys. Rev.
Measurement of the Ds lifetime
We report precise measurement of the Ds meson lifetime. The data were taken
by the SELEX experiment (E781) spectrometer using 600 GeV/c Sigma-, pi- and p
beams. The measurement has been done using 918 reconstructed Ds. The lifetime
of the Ds is measured to be 472.5 +- 17.2 +- 6.6 fs, using K*(892)0K+- and phi
pi+- decay modes. The lifetime ratio of Ds to D0 is 1.145+-0.049.Comment: 5 pages, 2 figures submitted to Phys. Lett.
Confirmation of the Double Charm Baryon Xi_cc+ via its Decay to p D+ K-
We observes a signal for the double charm baryon Xi_cc+ in the charged decay
mode Xi_cc+ -> p D+ K- to complement the previously reported decay Xi_cc+ ->
Lambda_c K- pi+ in data from SELEX, the charm hadro-production experiment
(E781) at Fermilab. In this new decay mode we observe an excess of 5.62 events
over an expected background estimated by event mixing to be 1.38+/-0.13 events.
The Poisson probability that a background fluctuation can produce the apparent
signal is less than 6.4E-4. The observed mass of this state is
(3518+/-3)MeV/c^2, consistent with the published result. Averaging the two
results gives a mass of (3518.7+/-1.7)MeV/c^2. The observation of this new weak
decay mode confirms the previous SELEX suggestion that this state is a double
charm baryon. The relative branching ratio Gamma(Xi_cc+ -> pD+K-)/Gamma(Xi_cc+
-> Lambda_c K- pi+) = 0.36+/-0.21.Comment: 11 pages, 6 included eps figures. v2 includes improved statistical
method to determine significance of observation. Submitted to PL
Hadronic Production of Lambda_c from 600 GeV/c pion, sigma and proton beams
We present data from Fermilab experiment E781 (SELEX) on the hadroproduction
asymmetry for anti-Lambda_c compared to Lambda_c+ as a function of xF and pt2
distributions for Lambda_c+. These data were measured in the same apparatus
using incident pi-, sigma- beams at 600 GeV/c and proton beam at 540 GeV/c. The
asymmetry is studied as a function of xF. In the forward hemisphere with xF >=
0.2 both baryon beams exhibit very strong preference for producing charm
baryons rather than charm antibaryons, while the pion beam asymmetry is much
smaller. In this energy regime the results show that beam fragments play a
major role in the kinematics of Lambda_c formation, as suggested by the leading
quark picture.Comment: 6 pages, 5 figures (postscript), RevTeX, submitted to Phy. Rev. Let
- …