63 research outputs found
Reaction times of monitoring schemes for ARMA time series
This paper is concerned with deriving the limit distributions of stopping
times devised to sequentially uncover structural breaks in the parameters of an
autoregressive moving average, ARMA, time series. The stopping rules are
defined as the first time lag for which detectors, based on CUSUMs and Page's
CUSUMs for residuals, exceed the value of a prescribed threshold function. It
is shown that the limit distributions crucially depend on a drift term induced
by the underlying ARMA parameters. The precise form of the asymptotic is
determined by an interplay between the location of the break point and the size
of the change implied by the drift. The theoretical results are accompanied by
a simulation study and applications to electroencephalography, EEG, and IBM
data. The empirical results indicate a satisfactory behavior in finite samples.Comment: Published at http://dx.doi.org/10.3150/14-BEJ604 in the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Functional Data Analysis with Increasing Number of Projections
Functional principal components (FPC's) provide the most important and most
extensively used tool for dimension reduction and inference for functional
data. The selection of the number, d, of the FPC's to be used in a specific
procedure has attracted a fair amount of attention, and a number of reasonably
effective approaches exist. Intuitively, they assume that the functional data
can be sufficiently well approximated by a projection onto a finite-dimensional
subspace, and the error resulting from such an approximation does not impact
the conclusions. This has been shown to be a very effective approach, but it is
desirable to understand the behavior of many inferential procedures by
considering the projections on subspaces spanned by an increasing number of the
FPC's. Such an approach reflects more fully the infinite-dimensional nature of
functional data, and allows to derive procedures which are fairly insensitive
to the selection of d. This is accomplished by considering limits as d tends to
infinity with the sample size.
We propose a specific framework in which we let d tend to infinity by
deriving a normal approximation for the two-parameter partial sum process of
the scores \xi_{i,j} of the i-th function with respect to the j-th FPC. Our
approximation can be used to derive statistics that use segments of
observations and segments of the FPC's. We apply our general results to derive
two inferential procedures for the mean function: a change-point test and a
two-sample test. In addition to the asymptotic theory, the tests are assessed
through a small simulation study and a data example
Changepoint-Analyse für Kenngrößen der Telekommunikation
Thema der Dissertation ist die theoretische
Untersuchung von Verfahren der Changepoint-Analyse zur Anwendung
auf Telekommunikationsdaten.
Die hier betrachteten Modelle sind durch Modelle motiviert, wie
sie fĂĽr Fragestellungen der Telekommunikation verwendet werden.
Insbesondere fĂĽr Marktanteilsuntersuchungen bezogen auf
telefonierte Minuten erweisen sich lineare Modelle als geeignet.
Die Fehlerterme sind dabei in der Praxis häufig nicht unabhängig,
wie in theoretischen Untersuchungen oft vorausgesetzt wird,
sondern als korreliert anzusehen. Aus dieser Motivation heraus
verallgemeinern wir Verfahren der a posteriori Changepoint-Analyse
für lineare Modelle mit unabhängigen Fehlern auf solche mit
korrelierten Fehlertermen.
Eine weitere wichtige sehr allgemein definierte Klasse von
Modellen ist die Modellklasse der State-Space Modelle. State-Space
Modelle werden insbesondere fĂĽr Prognosen des Verkehrsaufkommens
im Telekommunikationsbereich herangezogen. Es werden neue
Verfahren zur a posteriori Changepoint-Analyse fĂĽr diese
Modellklasse entwickelt und auf ihre asymptotischen Eigenschaften
untersucht.
BezĂĽglich sequentieller Verfahren der Changepoint-Analyse stellen
wir bekannte praxisorientierte Verfahren vor und setzen diese auf
die hier betrachteten linearen Modelle sowie State-Space Modelle
um.
Theoretisch erzielte Ergebnisse werden durch Simulationen
überprüft. Sämtliche Programme, die zu Simulationsstudien
verwendet werden, sind in der statistischen Programmiersprache R
geschrieben.
Die hier untersuchten Verfahren werden in einer Anwendungsstudie,
die aus DatenschutzgrĂĽnden nicht Bestandteil der Dissertation ist, auf Realdaten der Deutschen Telekom angewendet. Dabei wird
einerseits die Konzeption von FrĂĽhwarnsystemen diskutiert, die
sequentiell Beobachtungen auf StrukturbrĂĽche (Abweichungen von
einem vorgegebenen Modell) untersuchen. Andererseits betrachten
wir dort Analysesysteme, die eine Menge von Beobachtungen im
Nachhinein (''a posteriori'') auf vorhandene Changepoints
ĂĽberprĂĽfen. Die Verfahren liefern in praktischen Anwendungen
wertvolle Hinweise auf StrukturbrĂĽche in beobachteten Daten. Ein
Teil der Verfahren wird von der Deutschen Telekom zur
automatisierten Ăśberwachung von Marktanteilen sowie anderen
Zielgrößen verwendet
Reaction times of monitoring schemes for ARMA time series
This paper is concerned with deriving the limit distributions of stopping times devised to
sequentially uncover structural breaks in the parameters of an autoregressive moving average,
ARMA, time series. The stopping rules are defined as the first time lag for which detectors,
based on CUSUMs and Page's CUSUMs for residuals, exceed the value of a prescribed threshold
function. It is shown that the limit distributions crucially depend on a drift term induced
by the underlying ARMA parameters. The precise form of the asymptotic is determined by
an interplay between the location of the break point and the size of the change implied by
the drift. The theoretical results are accompanied by a simulation study and applications to
electroencephalography, EEG, and IBM data. The empirical results indicate a satisfactory
behavior in finite samples
Invariance principles for renewal processes when only moments of low order exist
AbstractStarting from recent strong and weak approximations to the partial sums of i.i.d. random vectors (cf. U. Einmahl, Ann. Probab., 15 1419–1440), some corresponding invariance principles are developed for associated renewal processes and random sums. Optimality of the approximation is proved in the case when only two moments exist. Among other applications, a Darling-Erdös type extreme value theorem for renewal processes will be derived
Invariance principles for renewal processes when only moments of low order exist
Starting from recent strong and weak approximations to the partial sums of i.i.d. random vectors (cf. U. Einmahl, Ann. Probab., 15 1419-1440), some corresponding invariance principles are developed for associated renewal processes and random sums. Optimality of the approximation is proved in the case when only two moments exist. Among other applications, a Darling-Erdös type extreme value theorem for renewal processes will be derived.Invariance principles strong approximations weak approximations renewal processes random sums Wiener process extreme value theorem
On the optimality of strong approximation rates for compound renewal processes
The optimality of certain approximation rates appearing in strong invariance principles for partial sums indexed by a renewal process is discussed. The results extend and unify earlier work on the best rates in the invariance principles for renewal counting processes. The motivation for this note came from a recent approximation of compound renewal processes due to Csörgo, Deheuvels and Horváth (1987), which is presented here in a slightlty extended version.compound renewal processes Wiener process strong invariance principles optimal approximation rates
- …