647 research outputs found

    Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence

    Get PDF
    Using a two-photon interference technique, we measure the delay for single-photon wavepackets to be transmitted through a multilayer dielectric mirror, which functions as a ``photonic bandgap'' medium. By varying the angle of incidence, we are able to confirm the behavior predicted by the group delay (stationary phase approximation), including a variation of the delay time from superluminal to subluminal as the band edge is tuned towards to the wavelength of our photons. The agreement with theory is better than 0.5 femtoseconds (less than one quarter of an optical period) except at large angles of incidence. The source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure

    Statistics of counter-streaming solar wind suprathermal electrons at solar minimum : STEREO observations

    Get PDF
    Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs) in the vicinity of corotating interaction regions (CIRs) during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used), but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream), as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1) the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2) that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to CIRs

    Comparison Of The Genesis Solar Wind Regime Algorithm Results With Solar Wind Composition Observed By ACE

    Get PDF
    Launched on 8 August 2001, the NASA Genesis mission is now collecting samples of the solar wind in various materials, and will return those samples to Earth in 2004 for analysis. A primary science goal of Genesis is the determination of the isotopic and elemental composition of the solar atmosphere from the solar wind material returned. In particular, Genesis will provide measurements of those species that are not provided by solar and in situ observations. We know from in situ measurements that the solar wind exhibits compositional variations across different types of solar wind flows. Therefore, Genesis exposes different collectors to solar wind originating from three flow types: coronal hole, coronal mass ejection (CME), and interstream flows. Flow types are identified using in situ measurements of solar wind protons, alphas, and electrons from electrostatic analyzers carried by Genesis. The flow regime selection algorithm and subsequent collector deployment on Genesis act autonomously. We present an assessment of composition variations of O, He, and Mg ions observed by ACE/SWICS concurrent with Genesis observations, and compare these to the Genesis algorithm decisions. Not only does this serve as a test of the algorithm, the compilation of composition vs. regime will be important for comparison to the abundances determined from sample analysis at the end of the mission. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87657/2/632_1.pd

    Discourse or dialogue? Habermas, the Bakhtin Circle, and the question of concrete utterances

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via the link below.This article argues that the Bakhtin Circle presents a more realistic theory of concrete dialogue than the theory of discourse elaborated by Habermas. The Bakhtin Circle places speech within the “concrete whole utterance” and by this phrase they mean that the study of everyday language should be analyzed through the mediations of historical social systems such as capitalism. These mediations are also characterized by a determinate set of contradictions—the capital-labor contradiction in capitalism, for example—that are reproduced in unique ways in more concrete forms of life (the state, education, religion, culture, and so on). Utterances always dialectically refract these processes and as such are internal concrete moments, or concrete social forms, of them. Moreover, new and unrepeatable dialogic events arise in these concrete social forms in order to overcome and understand the constant dialectical flux of social life. But this theory of dialogue is different from that expounded by Habermas, who tends to explore speech acts by reproducing a dualism between repeatable and universal “abstract” discursive processes (commonly known as the ideal speech situation) and empirical uses of discourse. These critical points against Habermas are developed by focusing on six main areas: sentences and utterances; the lifeworld and background language; active versus passive understandings of language; validity claims; obligation and relevance in language; and dialectical universalism

    A Pilot Study Assessing the Potential Role of non-CD133 Colorectal Cancer Stem Cells as Biomarkers

    Get PDF
    Introduction: Over 50% of patients with colorectal cancer (CRC) will progress and/or develop metastases. Biomarkers capable of predicting progression, risk stratification and therapeutic benefit are needed. Cancer stem cells are thought to be responsible for tumor initiation, dissemination and treatment failure. Therefore, we hypothesized that CRC cancer stem cell markers (CRCSC) will identify a group of patients at high risk for progression

    Complete Haplotype Sequence of the Human Immunoglobulin Heavy-Chain Variable, Diversity, and Joining Genes and Characterization of Allelic and Copy-Number Variation

    Get PDF
    The immunoglobulin heavy-chain locus (IGH) encodes variable (IGHV), diversity (IGHD), joining (IGHJ), and constant (IGHC) genes and is responsible for antibody heavy-chain biosynthesis, which is vital to the adaptive immune response. Programmed V-(D)-J somatic rearrangement and the complex duplicated nature of the locus have impeded attempts to reconcile its genomic organization based on traditional B-lymphocyte derived genetic material. As a result, sequence descriptions of germline variation within IGHV are lacking, haplotype inference using traditional linkage disequilibrium methods has been difficult, and the human genome reference assembly is missing several expressed IGHV genes. By using a hydatidiform mole BAC clone resource, we present the most complete haplotype of IGHV, IGHD, and IGHJ gene regions derived from a single chromosome, representing an alternate assembly of ∌1 Mbp of high-quality finished sequence. From this we add 101 kbp of previously uncharacterized sequence, including functional IGHV genes, and characterize four large germline copy-number variants (CNVs). In addition to this germline reference, we identify and characterize eight CNV-containing haplotypes from a panel of nine diploid genomes of diverse ethnic origin, discovering previously unmapped IGHV genes and an additional 121 kbp of insertion sequence. We genotype four of these CNVs by using PCR in 425 individuals from nine human populations. We find that all four are highly polymorphic and show considerable evidence of stratification (Fst = 0.3–0.5), with the greatest differences observed between African and Asian populations. These CNVs exhibit weak linkage disequilibrium with SNPs from two commercial arrays in most of the populations tested

    Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality

    Get PDF
    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.Comment: 138 pages, 25 figures, review associated with New Journal of Physics special issue "Focus on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas" (http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Strongly%20Correlated%20Quantum%20Fluids%20-%20from%20Ultracold%20Quantum%20Gases%20to%20QCD%20Plasmas
    • 

    corecore