186 research outputs found

    Quantisation of Conformal Fields in Three-dimensional Anti-de Sitter Black Hole Spacetime

    Full text link
    Utilizing the conformal-flatness nature of 3-dim. Anti-de Sitter (AdS_3) black hole solution of Banados, Teitelboim and Zanelli, the quantisation of conformally-coupled scalar and spinor fields in this background spacetime is explicitly carried out. In particular, mode expansion forms and propagators of the fields are obtained in closed forms. The vacuum in this conformally-coupled field theories in AdS_3 black hole spacetime, which is conformally-flat, is the conformal vacuum which is unique and has global meaning. This point particularly suggests that now the particle production by AdS_3 black hole spacetime should be absent. General argument establishing the absence of real particle creation by AdS_3 black hole spacetime for this case of conformal triviality is provided. Then next, using the explicit mode expansion forms for conformally-coupled scalar and spinor fields, the bosonic and fermionic superradiances are examined and found to be absent confirming the expectation.Comment: 51 pages, Revtex, version to appear in Int. J. Mod. Phys.

    Supergeometry of Three Dimensional Black Holes

    Get PDF
    We show how the supersymmetric properties of three dimensional black holes can be obtained algebraically. The black hole solutions are constructed as quotients of the supergroup OSp(12;R)OSp(1|\,2;R) by a discrete subgroup of its isometry supergroup. The generators of the action of the isometry supergroup which commute with these identifications are found. These yield the supersymmetries for the black hole as found in recent studies as well as the usual geometric isometries. It is also shown that in the limit of vanishing cosmological constant, the black hole vacuum becomes a null orbifold, a solution previously discussed in the context of string theory.Comment: 12 pages, harvmac, discussion of rotating black hole added, some minor corrections, reference adde

    Yang-Mills Cosmologies and Collapsing Gravitational Sphalerons

    Full text link
    Cosmological solutions with a homogeneous Yang-Mills field which oscillates and passes between topologically distinct vacua are discussed. These solutions are used to model the collapsing Bartnik-McKinnon gravitational sphaleron and the associated anomalous production of fermions. The Dirac equation is analyzed in these backgrounds. It is shown explicitly that a fermion energy level crosses from the negative to positive energy spectrum as the gauge field evolves between the topologically distinct vacua. The cosmological solutions are also generalized to include an axion field.Comment: 12 pages, harvmac, DAMTP93/R3

    Time-Symmetric Initial Data for Multi-Body Solutions in Three Dimensions

    Get PDF
    Time-symmetric initial data for two-body solutions in three dimensional anti-deSitter gravity are found. The spatial geometry has constant negative curvature and is constructed as a quotient of two-dimensional hyperbolic space. Apparent horizons correspond to closed geodesics. In an open universe, it is shown that two black holes cannot exist separately, but are necessarily enclosed by a third horizon. In a closed universe, two separate black holes can exist provided there is an additional image mass.Comment: 12 pages, harvmac macro, minor changes in wordin

    Lattice Universes in 2+1-dimensional gravity

    Full text link
    Lattice universes are spatially closed space-times of spherical topology in the large, containing masses or black holes arranged in the symmetry of a regular polygon or polytope. Exact solutions for such spacetimes are found in 2+1 dimensions for Einstein gravity with a non-positive cosmological constant. By means of a mapping that preserves the essential nature of geodesics we establish analogies between the flat and the negative curvature cases. This map also allows treatment of point particles and black holes on a similar footing.Comment: 14 pages 7 figures, to appear in Festschrift for Vince Moncrief (CQG

    Anomalous Fermion Production in Gravitational Collapse

    Full text link
    The Dirac equation is solved in the Einstein-Yang-Mills background found by Bartnik and McKinnon. We find a normalizable zero-energy fermion mode in the ss-wave sector. As shown recently, their solution corresponds to a gravitational sphaleron which mediates transitions between topologically distinct vacua. Since the Bartnik-McKinnon solution is unstable, it will either collapse to form a black hole or radiate away its energy. In either case, as the Chern-Simons number of the configuration changes, there will be an accompanying anomalous change in fermion number.Comment: 12 pages, preprint DAMTP93/R1

    Back-reaction of a conformal field on a three-dimensional black hole

    Get PDF
    The first order corrections to the geometry of the (2+1)-dimensional black hole due to back-reaction of a massless conformal scalar field are computed. The renormalized stress energy tensor used as the source of Einstein equations is computed with the Green function for the black-hole background with transparent boundary conditions. This tensor has the same functional form as the one found in the nonperturbative case which can be exactly solved. Thus, a static, circularly symmetric and asymptotically anti-de Sitter black hole solution of the semiclassical equations is found. The corrections to the thermodynamic quantities are also computed.Comment: 12 pages, RevTeX, no figure
    corecore