657 research outputs found

    Определение эффективности нейтронного детектора из пластического сцинтиллятора o100?200 мм

    Get PDF
    Рассчитывается и экспериментально проверяется эффективность детектора. к нейтронам сверхвысоких (десятки и сотни МэВ) энергий

    MOVPE growth of GaP/GaPN core-shell nanowires: N incorporation, morphology and crystal structure

    Get PDF
    Dilute nitride III-V nanowires (NWs) possess great potential as building blocks in future optoelectronical and electrochemical devices. Here, we provide evidence for the growth of GaP/GaPN core-shell NWs via metalorganic vapor phase epitaxy, both on GaP(111)B and on GaP/Si (111) hetero-substrates. The NW morphology meets the common needs for use in applications, i.e. they are straight and vertically oriented to the substrate as well as homogeneous in length. Moreover, no parasitical island growth is observed. Nitrogen was found to be incorporated on group V sites as determined from transmission electron microscopy (TEM) and Raman spectroscopy. Together with the incorporation of N, the NWs exhibit strong photoluminescence in the visible range, which we attribute to radiative recombination at N-related deep states. Independently of the N incorporation, a peculiar facet formation was found, with {110} facets at the top and {112} at the bottom of the NWs. TEM reveals that this phenomenon is related to different stacking fault densities within the zinc blende structure, which lead to different effective surface energies for the bottom and the top of the NWs.This work was supported by the Deutsche Forschungsgemeinschaft (DFG, proj. no. HA 3096/4-2 & DA 396/6-2). We thank D Roßberg and D Flock for preparation of the TEM lamellae via FIB, as well as A Müller for technical support of the MOVPE system and W Dziony for AES measurements. We appreciate fruitful discussions with A Paszuk and A Nägelein

    The KATRIN Pre-Spectrometer at reduced Filter Energy

    Get PDF
    The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An ultra-low background of about b = 10 mHz is among the requirements to reach this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E filter type are used in a tandem configuration. This setup, however, produces a Penning trap which could lead to increased background. We have performed test measurements showing that the filter energy of the pre-spectrometer can be reduced by several keV in order to diminish this trap. These measurements were analyzed with the help of a complex computer simulation, modeling multiple electron reflections both from the detector and the photoelectric electron source used in our test setup.Comment: 22 pages, 12 figure

    Improved limits on nuebar emission from mu+ decay

    Full text link
    We investigated mu+ decays at rest produced at the ISIS beam stop target. Lepton flavor (LF) conservation has been tested by searching for \nueb via the detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays was identified. We extract upper limits of the branching ratio for the LF violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ -> e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0). These results improve earlier limits by one order of magnitude and restrict extensions of the SM in which \nueb emission from mu+ decay is allowed with considerable strength. The decay \mupdeb as source for the \nueb signal observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl

    Characterization measurements of the TRISTAN multi-pixel silicon drift detector

    Get PDF
    Sterile neutrinos are a minimal extension of the Standard Model of Particle Physics. A laboratory-based approach to search for this particle is via tritium beta-decay, where a sterile neutrino would cause a kink-like spectral distortion. The Karlsruhe Tritium Neutrino (KATRIN) experiment extended by a multi-pixel Silicon Drift Detector system has the potential to reach an unprecedented sensitivity to the keV-scale sterile neutrino in a lab-based experiment. The new detector system combines good spectroscopic performance with a high rate capability. In this work, we report about the characterization of charge-sharing between pixels and the commissioning of a 47-pixel prototype detector in a MAC-E filte

    Characterization measurements of the TRISTAN multi-pixel silicon drift detector

    Get PDF
    Sterile neutrinos are a minimal extension of the standard model of particle physics. A laboratory-based approach to search for this particle is via tritium β-decay, where a sterile neutrino would cause a kink-like spectral distortion. The Karlsruhe Tritium Neutrino (KATRIN) experiment extended by a multi-pixel Silicon Drift Detector system has the potential to reach an unprecedented sensitivity to the keV-scale sterile neutrino in a lab-based experiment. The new detector system combines good spectroscopic performance with a high rate capability. In this work, we report about the characterization of charge-sharing between pixels and the commissioning of a 47-pixel prototype detector in a MAC-E filter
    corecore