447 research outputs found

    Galaxies at high redshift: progress and prospects

    Get PDF
    There has been considerable progress made in the discovery, observation, and understanding of high redshift galaxies in the last few years; most of this progress is attributable to greatly improved spectroscopy throughput made possible by state-of-the-art instruments on the new generation of 8-10m telescopes. Here we review a few of the areas in which substantial progress has been made, and discuss the future of high redshift galaxy work in the context of the observational facilities that are either in operation or soon to come

    Filamentary Large-scale Structure Traced by Six Lyα Blobs at z = 2.3

    Get PDF
    Extended nebulae of Lyα emission ("Lyα blobs") are known to be associated with overdense regions at high redshift. Here we present six large Lyα blobs in a previously known protocluster with galaxy overdensity δ ~ 7 at z = 2.3; this is the richest field of giant Lyα blobs detected to date. The blobs have linear sizes of ≳ 100 kpc and Lyα luminosities of ~10^(43) erg s^(–1). The positions of the blobs define two linear filaments with an extent of at least 12 comoving Mpc; these filaments intersect at the center of one of the blobs. Measurement of the position angles of the blobs indicates that five of the six are aligned with these filaments to within ~10°, suggesting a connection between the physical processes powering extended Lyα emission and those driving structure on larger scales

    The halo masses and galaxy environments of hyperluminous QSOs at z~2.7 in the Keck Baryonic Structure Survey

    Get PDF
    We present an analysis of the galaxy distribution surrounding 15 of the most luminous (>10^{14} L_sun; M_1450 ~ -30) QSOs in the sky with z~2.7. Our data are drawn from the Keck Baryonic Structure Survey (KBSS). In this work, we use the positions and spectroscopic redshifts of 1558 galaxies that lie within ~3', (4.2 h^{-1} comoving Mpc; cMpc) of the hyperluminous QSO (HLQSO) sightline in one of 15 independent survey fields, together with new measurements of the HLQSO systemic redshifts. We measure the galaxy-HLQSO cross-correlation function, the galaxy-galaxy autocorrelation function, and the characteristic scale of galaxy overdensities surrounding the sites of exceedingly rare, extremely rapid, black hole accretion. On average, the HLQSOs lie within significant galaxy overdensities, characterized by a velocity dispersion sigma_v ~ 200 km s^{-1} and a transverse angular scale of ~25", (~200 physical kpc). We argue that such scales are expected for small groups with log(M_h/M_sun)~13. The galaxy-HLQSO cross-correlation function has a best-fit correlation length r_0_GQ = (7.3 \pm 1.3) h^{-1} cMpc, while the galaxy autocorrelation measured from the spectroscopic galaxy sample in the same fields has r_0_GG = (6.0 \pm 0.5) h^{-1} cMpc. Based on a comparison with simulations evaluated at z ~ 2.6, these values imply that a typical galaxy lives in a host halo with log(M_h/M_sun) = 11.9\pm0.1, while HLQSOs inhabit host halos of log(M_h/M_sun) = 12.3\pm0.5. In spite of the extremely large black hole masses implied by their observed luminosities [log(M_BH/M_sun) > 9.7], it appears that HLQSOs do not require environments very different from their much less luminous QSO counterparts. Evidently, the exceedingly low space density of HLQSOs (< 10^{-9} cMpc^{-3}) results from a one-in-a-million event on scales << 1 Mpc, and not from being hosted by rare dark matter halos.Comment: 15 pages, 6 figures. Accepted for publication in Ap

    Wallace L. W. Sargent (1935–2012)

    Get PDF
    By any measure, Professor Wallace L. W. Sargent (known to colleagues and friends as “Wal”) was one of the most influential and consistently productive astronomers of the last 50 years; he authored or coauthored more than 320 refereed journal articles, which have received more than 25,000 citations. He never rested on past laurels—65 of his papers (with >5000 citations) have appeared since the year 2000. Wal remained active as a teacher and researcher until just weeks before the end of his life (he officially retired from the Caltech faculty on 2012 October 1). His impact on the field of astrophysics was remarkably broad as well as seminal; among many other awards, he was elected in 1981 as a Fellow of the Royal Society (U.K.) and as a member of the National Academy of Sciences in 2005, his first year of eligibility after becoming a naturalized U.S. citizen

    The Connection Between Reddening, Gas Covering Fraction, and the Escape of Ionizing Radiation at High Redshift

    Get PDF
    We use a large sample of galaxies at z~3 to establish a relationship between reddening, neutral gas covering fraction (fcov(HI)), and the escape of ionizing photons at high redshift. Our sample includes 933 galaxies at z~3, 121 of which have very deep spectroscopic observations (>7 hrs) in the rest-UV (lambda=850-1300 A) with Keck/LRIS. Based on the high covering fraction of outflowing optically-thick HI indicated by the composite spectra of these galaxies, we conclude that photoelectric absorption, rather than dust attenuation, dominates the depletion of ionizing photons. By modeling the composite spectra as the combination of an unattenuated stellar spectrum including nebular continuum emission with one that is absorbed by HI and reddened by a line-of-sight extinction, we derive an empirical relationship between E(B-V) and fcov(HI). Galaxies with redder UV continua have larger covering fractions of HI characterized by higher line-of-sight extinctions. Our results are consistent with the escape of Lya through gas-free lines-of-sight. Covering fractions based on low-ionization interstellar absorption lines systematically underpredict those deduced from the HI lines, suggesting that much of the outflowing gas may be metal-poor. We develop a model which connects the ionizing escape fraction with E(B-V), and which may be used to estimate the escape fraction for an ensemble of high-redshift galaxies. Alternatively, direct measurements of the escape fraction for our data allow us to constrain the intrinsic 900-to-1500 A flux density ratio to be >0.20, a value that favors stellar population models that include weaker stellar winds, a flatter initial mass function, and/or binary evolution. Lastly, we demonstrate how the framework discussed here may be used to assess the pathways by which ionizing radiation escapes from high-redshift galaxies. [Abridged]Comment: 22 pages, 3 tables, 14 figures, accepted to the Astrophysical Journa

    Substructure within the SSA22 protocluster at z3.09z\approx3.09

    Get PDF
    We present the results of a densely sampled spectroscopic survey of the SSA22 protocluster at z3.09z\approx 3.09. Our sample with Keck/LRIS spectroscopy includes 106 Lyα\alpha Emitters (LAEs) and 40 Lyman Break Galaxies (LBGs) at z=3.053.12z=3.05-3.12. These galaxies are contained within the 9×99'\times9' region in which the protocluster was discovered, which also hosts the maximum galaxy overdensity in the SSA22 region. The redshift histogram of our spectroscopic sample reveals two distinct peaks, at z=3.069z=3.069 (blue, 43 galaxies) and z=3.095z=3.095 (red, 103 galaxies). Furthermore, objects in the blue and red peaks are segregated on the sky, with galaxies in the blue peak concentrating towards the western half of the field. These results suggest that the blue and red redshift peaks represent two distinct structures in physical space. Although the double-peaked redshift histogram is traced in the same manner by LBGs and LAEs, and brighter and fainter galaxies, we find that nine out of 10 X-ray AGNs in SSA22, and all seven spectroscopically-confirmed giant Lyα\alpha "blobs," reside in the red peak. We combine our dataset with sparsely sampled spectroscopy from the literature over a significantly wider area, finding preliminary evidence that the double-peaked structure in redshift space extends beyond the region of our dense spectroscopic sampling. In order to fully characterize the three-dimensional structure, dynamics, and evolution of large-scale structure in the SSA22 overdensity, we require the measurement of large samples of LAE and LBG redshifts over a significantly wider area, as well as detailed comparisons with cosmological simulations of massive cluster formation.Comment: 6 pages, 4 figures, Accepted to ApJ Letter

    The Rest Frame Ultraviolet Spectra of UV-Selected Active Galactic Nuclei at z ~ 2-3

    Get PDF
    We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z ~ 2-3. The rest-frame UV composite spectrum for our AGN sample shows several emission lines characteristic of AGNs, as well as interstellar absorption features seen in star-forming Lyman Break Galaxies (LBGs). We report a detection of NIV]1486, which has been observed in high-redshift radio galaxies, as well as in rare optically-selected quasars. The UV continuum slope of the composite spectrum is significantly redder than that of a sample of non-AGN UV-selected star forming galaxies. Blueshifted SiIV absorption provides evidence for outflowing highly-ionized gas in these objects at speeds of ~ 10^(3) km/s, quantitatively different from what is seen in the outflows of non-AGN LBGs. Grouping the individual AGNs by parameters such as Ly-alpha equivalent width, redshift, and UV continuum magnitude allows for an analysis of the major spectroscopic trends within the sample. Stronger Ly-alpha emission is coupled with weaker low-ionization absorption, which is similar to what is seen in the non-AGN LBGs, and highlights the role that cool interstellar gas plays in the escape of Ly-alpha photons. However, the AGN composite does not show the same trends between Ly-alpha strength and extinction seen in the non-AGN LBGs. These results represent the first such comparison at high-redshift between star-forming galaxies and similar galaxies that host AGN activity.Comment: 13 pages, 6 figures, accepted by Ap

    Lyman Break Galaxies at z>4 and the Evolution of the UV Luminosity Density at High Redshift

    Full text link
    We present initial results of a survey for star-forming galaxies in the redshift range 3.8 < z < 4.5. This sample consists of a photometric catalog of 244 galaxies culled from a total solid angle of 0.23 square degrees to an apparent magnitude of I_{AB}=25.0. Spectroscopic redshifts in the range 3.61 < z < 4.81 have been obtained for 48 of these galaxies; their median redshift is =4.13. Selecting these galaxies in a manner entirely analogous to our large survey for Lyman break galaxies at smaller redshift (2.7 < z < 3.4) allows a relatively clean differential comparison between the populations and integrated luminosity density at these two cosmic epochs. Over the same range of UV luminosity, the spectroscopic properties of the galaxy samples at z~4 and z~3 are indistinguishable, as are the luminosity function shapes and the total integrated UV luminosity densities (rho_{UV}(z=3)/rho_{UV}(z=4) = 1.1 +/-0.3). We see no evidence at these bright magnitudes for the steep decline in the star formation density inferred from fainter photometric Lyman-break galaxies in the Hubble Deep Field (HDF). If the true luminosity density at z~4 is somewhat higher than implied by the HDF, as our ground-based sample suggests, then the emissivity of star formation as a function of redshift is essentially constant for all z>1 once internally consistent corrections for dust are made. This suggests that there is no obvious peak in star formation activity, and that the onset of substantial star formation in galaxies occurs at z > 4.5. [abridged abstract]Comment: To appear in the ApJ, minor revisions to match accepted versio

    Deuterium Abundance in the Most Metal-Poor Damped Lyman alpha System: Converging on Omega_baryons

    Get PDF
    The most metal-poor DLA known to date, at z = 2.61843 in the spectrum of the QSO Q0913+072, with an oxygen abundance only about 1/250 of the solar value, shows six well resolved D I Lyman series transitions in high quality echelle spectra recently obtained with the ESO VLT. We deduce a value of the deuterium abundance log (D/H) = -4.56+/-0.04 which is in good agreement with four out of the six most reliable previous determinations of this ratio in QSO absorbers. We find plausible reasons why in the other two cases the 1 sigma errors may have been underestimated by about a factor of two. The addition of this latest data point does not change significantly the mean value of the primordial abundance of deuterium, suggesting that we are now converging to a reliable measure of this quantity. We conclude that = -4.55+/-0.03 and Omega_b h^2 (BBN) = 0.0213+/-0.0010 (68% confidence limits). Including the latter as a prior in the analysis of the five year data of WMAP leads to a revised best-fitting value of the power-law index of primordial fluctuations n_s = 0.956+/-0.013 (1 sigma) and n_s < 0.990 with 99% confidence. Considering together the constraints provided by WMAP 5, (D/H)_p, baryon oscillations in the galaxy distribution, and distances to Type Ia supernovae, we arrive at the current best estimates Omega_b h^2 = 0.0224+/-0.0005 and n_s = 0.959+/-0.013.Comment: 13 pages, 8 Figures. Revised version following referee's comments. Accepted for publication in Monthly Notices of the Royal Astronomical Society. A few typos correcte
    corecore