19 research outputs found

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    A living WHO guideline on drugs for covid-19

    Get PDF
    CITATION: Agarwal, A. et al. 2022. A living WHO guideline on drugs for covid-19. British Medical Journal, 370. doi:10.1136/bmj.m3379The original publication is available at https://jcp.bmj.com/This living guideline by Arnav Agarwal and colleagues (BMJ 2020;370:m3379, doi:10.1136/bmj.m3379) was last updated on 22 April 2022, but the infographic contained two dosing errors: the dose of ritonavir with renal failure should have read 100 mg, not 50 mg; and the suggested regimen for remdesivir should have been 3 days, not 5-10 days. The infographic has now been corrected.Publishers versio

    Place-based planning for resilience: evaluating the Callaghan Valley Olympic initiative

    Get PDF
    Planning involves changing places, and the process used for planning will determine whether these changes connect with the sense of place established for an area. This was the case in the creation of the Whistler Olympic Park, a venue for the Vancouver 2010 Winter Games. This research evaluates the planning process for the venue using a theoretical framework. The theoretical process aims towards resilience, characterized as the ability for multiple stakeholders to come together in times of crisis to flexibly co-manage change. The findings suggest the Olympic process largely followed the theoretical one. However, there were some evident deviations such as a lack of dialogue in the structured process defined by the environmental assessment process of BC. Future engagements should take advantage of unstructured processes before environmental assessments, creating a space for people to have a sustained conversation around place

    Dual-Phase Osteogenic and Vasculogenic Engineered Tissue for Bone Formation

    Full text link
    Minimally invasive, injectable bone tissue engineering therapies offer the potential to facilitate orthopedic repair procedures, including in indications where enhanced bone regeneration is needed for complete healing. In this study, we developed a dual-phase tissue construct consisting of osteogenic (Osteo) and vasculogenic (Vasculo) components. A modular tissue engineering approach was used to create collagen/fibrin/hydroxyapatite (COL/FIB/HA) hydrogel microbeads containing embedded human bone marrow-derived mesenchymal stem cells (bmMSC). These microbeads were predifferentiated toward the osteogenic lineage in vitro for 14 days, and they were then embedded within a COL/FIB vasculogenic phase containing a coculture of undifferentiated bmMSC and human umbilical vein endothelial cells (HUVEC). In vitro studies demonstrated homogenous dispersion of microbeads within the outer phase, with endothelial network formation around the microbeads over 14 days in the coculture conditions. Subcutaneous injection into immunodeficient mice was used to investigate the ability of dual-phase (Osteo+Vasculo) and control (Osteo, Vasculo, Blank) constructs to form neovasculature and ectopic bone. Laser Doppler imaging demonstrated blood perfusion through all constructs at 1, 4, and 8 weeks postimplantation. Histological quantification of total vessel density showed no significant differences between the conditions. Microcomputed tomography indicated significantly higher ectopic bone volume (BV) in the Osteo condition at 4 weeks. At 8 weeks both the Osteo and Blank groups exhibited higher BV compared to the Vasculo and dual Osteo+Vasculo groups. These data not only show that osteogenic microbeads can be used to induce ectopic bone formation, but also suggest an inhibitory effect on BV when undifferentiated bmMSC and HUVEC were included in dual-phase constructs. This work may lead to improved methods for engineering vascularized bone tissue, and to injectable therapies for the treatment of orthopedic pathologies in which bone regeneration is delayed or prevented.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140231/1/ten.tea.2013.0740.pd

    Dual-Phase Osteogenic and Vasculogenic Engineered Tissue for Bone Formation

    No full text
    Minimally invasive, injectable bone tissue engineering therapies offer the potential to facilitate orthopedic repair procedures, including in indications where enhanced bone regeneration is needed for complete healing. In this study, we developed a dual-phase tissue construct consisting of osteogenic (Osteo) and vasculogenic (Vasculo) components. A modular tissue engineering approach was used to create collagen/fibrin/hydroxyapatite (COL/FIB/HA) hydrogel microbeads containing embedded human bone marrow-derived mesenchymal stem cells (bmMSC). These microbeads were predifferentiated toward the osteogenic lineage in vitro for 14 days, and they were then embedded within a COL/FIB vasculogenic phase containing a coculture of undifferentiated bmMSC and human umbilical vein endothelial cells (HUVEC). In vitro studies demonstrated homogenous dispersion of microbeads within the outer phase, with endothelial network formation around the microbeads over 14 days in the coculture conditions. Subcutaneous injection into immunodeficient mice was used to investigate the ability of dual-phase (Osteo+Vasculo) and control (Osteo, Vasculo, Blank) constructs to form neovasculature and ectopic bone. Laser Doppler imaging demonstrated blood perfusion through all constructs at 1, 4, and 8 weeks postimplantation. Histological quantification of total vessel density showed no significant differences between the conditions. Microcomputed tomography indicated significantly higher ectopic bone volume (BV) in the Osteo condition at 4 weeks. At 8 weeks both the Osteo and Blank groups exhibited higher BV compared to the Vasculo and dual Osteo+Vasculo groups. These data not only show that osteogenic microbeads can be used to induce ectopic bone formation, but also suggest an inhibitory effect on BV when undifferentiated bmMSC and HUVEC were included in dual-phase constructs. This work may lead to improved methods for engineering vascularized bone tissue, and to injectable therapies for the treatment of orthopedic pathologies in which bone regeneration is delayed or prevented.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140231/1/ten.tea.2013.0740.pd
    corecore