8 research outputs found

    Urinary excretion kinetics of [<sup>177</sup>Lu]Lu-PSMA-617

    Get PDF
    Introduction: For the implementation of suitable radiation safety measures in [177Lu]Lu-PSMA-617 therapy, additional insight into excretion kinetics is important. This study evaluates this kinetics in prostate cancer patients via direct urine measurements. Methods: Both the short-term (up to 24 h, n = 28 cycles) and long-term kinetics (up to 7 weeks, n = 35 samples) were evaluated by collection of urine samples. Samples were measured on a scintillation counter to determine excretion kinetics. Results: The mean excretion half-time during the first 20 h was 4.9 h. Kinetics was significantly different for patients with kidney function below or above eGFR 65 ml/min. Calculated skin equivalent dose in case of urinary contamination was between 50 and 145 mSv when it was caused between 0 and 8 h p.i. Measurable amounts of 177Lu were found in urine samples up to 18 days p.i. Conclusion: Excretion kinetics of [177Lu]Lu-PSMA-617 is especially relevant during the first 24 h, when accurate radiation safety measures are important to prevent skin contamination. Measures for accurate waste management are relevant up to 18 days.</p

    Bone marrow dosimetry in low volume mHSPC patients receiving Lu-177-PSMA therapy using SPECT/CT

    Get PDF
    Background: Bone marrow toxicity in advanced prostate cancer patients who receive [177Lu]Lu-PSMA-617 is a well-known concern. In early stage patients; e.g. low volume metastatic hormone sensitive prostate cancer (mHSPC) patients, prevention of late bone marrow toxicity is even more crucial due to longer life expectancy. To date, bone marrow dosimetry is primarily performed using blood sampling. This method is time consuming and does not account for possible active bone marrow uptake. Therefore other methodologies are investigated. We calculated the bone marrow absorbed dose for [177Lu]Lu-PSMA-617 in mHSPC patients using SPECT/CT imaging and compared it to the blood sampling method as reference. Methods: Eight mHSPC patients underwent two cycles (3 and 6 GBq) of [177Lu]Lu-PSMA-617 therapy. After each cycle, five time point (1 h, 1 day, 2 days, 3 days, 7 days) SPECT/CT was performed at kidney level. Bone marrow dosimetry was performed using commercial software by drawing ten 1.5 cm diameter spheres in the lowest ten vertebrae to determine the time-integrated activity. Simplified protocols using only 2 imaging time points and 3 vertebrae were also compared. Blood-based dosimetry was based on the blood sampling method according to the EANM guideline. Results: Mean bone marrow absorbed dose was significantly different (p &lt; 0.01) for the imaging based method (25.4 ± 8.7 mGy/GBq) and the blood based method (17.2 ± 3.4 mGy/GBq), with an increasing absorbed dose ratio between both methods over time. Bland Altman analysis of both simplification steps showed that differences in absorbed dose were all within the 95% limits of agreement. Conclusion: This study showed that bone marrow absorbed dose after [177Lu]Lu-PSMA-617 can be determined using an imaging-based method of the lower vertebrae, and simplified using 2 time points (1 and 7 days) and 3 vertebrae. An increasing absorbed dose ratio over time between the imaging-based method and blood-based method suggests that there might be specific bone marrow binding of [177Lu]Lu-PSMA-617.</p

    Bone marrow dosimetry in low volume mHSPC patients receiving Lu-177-PSMA therapy using SPECT/CT

    Get PDF
    Background: Bone marrow toxicity in advanced prostate cancer patients who receive [177Lu]Lu-PSMA-617 is a well-known concern. In early stage patients; e.g. low volume metastatic hormone sensitive prostate cancer (mHSPC) patients, prevention of late bone marrow toxicity is even more crucial due to longer life expectancy. To date, bone marrow dosimetry is primarily performed using blood sampling. This method is time consuming and does not account for possible active bone marrow uptake. Therefore other methodologies are investigated. We calculated the bone marrow absorbed dose for [177Lu]Lu-PSMA-617 in mHSPC patients using SPECT/CT imaging and compared it to the blood sampling method as reference. Methods: Eight mHSPC patients underwent two cycles (3 and 6 GBq) of [177Lu]Lu-PSMA-617 therapy. After each cycle, five time point (1 h, 1 day, 2 days, 3 days, 7 days) SPECT/CT was performed at kidney level. Bone marrow dosimetry was performed using commercial software by drawing ten 1.5 cm diameter spheres in the lowest ten vertebrae to determine the time-integrated activity. Simplified protocols using only 2 imaging time points and 3 vertebrae were also compared. Blood-based dosimetry was based on the blood sampling method according to the EANM guideline. Results: Mean bone marrow absorbed dose was significantly different (p &lt; 0.01) for the imaging based method (25.4 ± 8.7 mGy/GBq) and the blood based method (17.2 ± 3.4 mGy/GBq), with an increasing absorbed dose ratio between both methods over time. Bland Altman analysis of both simplification steps showed that differences in absorbed dose were all within the 95% limits of agreement. Conclusion: This study showed that bone marrow absorbed dose after [177Lu]Lu-PSMA-617 can be determined using an imaging-based method of the lower vertebrae, and simplified using 2 time points (1 and 7 days) and 3 vertebrae. An increasing absorbed dose ratio over time between the imaging-based method and blood-based method suggests that there might be specific bone marrow binding of [177Lu]Lu-PSMA-617.</p

    Tumoral Ki67 and PSMA Expression in Fresh Pre-PSMA-RLT Biopsies and Its Relation With PSMA-PET Imaging and Outcomes of PSMA-RLT in Patients With mCRPC

    Get PDF
    Introduction: Prostate specific membrane antigen (PSMA) directed radioligand therapy (RLT) is a novel therapy for metastatic castration-resistant prostate cancer (mCRPC) patients. However, it is still poorly understood why approximately 40% of the patients does not respond to PSMA-RLT. The aims of this study were to evaluate the pretreatment PSMA expression on immunohistochemistry (IHC) and PSMA uptake on PET/CT imaging in mCRPC patients who underwent PSMA-RLT. We correlated these parameters and a cell proliferation marker (Ki67) to the therapeutic efficacy of PSMA-RLT. Patients and Methods: In this retrospective study, mCRPC patients who underwent PSMA-RLT were analyzed. Patients biopsies were scored for immunohistochemical Ki67 expression, PSMA staining intensity and percentage of cells with PSMA expression. Moreover, the PSMA tracer uptake of the tumor lesion(s) and healthy organs on PET/CT imaging was assessed. The primary outcome was to evaluate the association between histological PSMA protein expression of tumor in pre-PSMA-RLT biopsies and the PSMA uptake on PSMA PET/CT imaging of the biopsied lesion. Secondary outcomes were to assess the relationship between PSMA expression and Ki67 on IHC and the progression free survival (PFS) and overall survival (OS) following PSMA-RLT. Results: In total, 22 mCRPC patients were included in this study. Nineteen (86%) patients showed a high and homogenous PSMA expression of &gt;80% on IHC. Three (14%) patients had low PSMA expression on IHC. Although there was limited PSMA uptake on PET/CT imaging, these 3 patients had lower PSMA uptake on PET/CT imaging compared to the patients with high PSMA expression on IHC. Yet, no correlation was found between PSMA uptake on PET/CT imaging and PSMA expression on IHC (SUVmax: R2 = 0.046 and SUVavg: R2 = 0.036). The 3 patients had a shorter PFS compared to the patients with high PSMA expression on IHC (HR: 4.76, 95% CI: 1.14-19.99; P = .033). Patients with low Ki67 expression had a longer PFS and OS compared to patients with a high Ki67 expression (HR: 0.40, 95% CI: 0.15-1.06; P = .013) Conclusion: The PSMA uptake on PSMA-PET/CT generally followed the PSMA expression on IHC. However, heterogeneity may be missed on PSMA-PET/CT. Immunohistochemical PSMA and Ki67 expression in fresh tumor biopsies, may contribute to predict treatment efficacy of PSMA-RLT in mCRPC patients. This needs to be further explored in prospective cohorts.</p

    Correction to: Variability in lutetium-177 SPECT quantification between different state-of-the-art SPECT/CT systems

    No full text
    Following publication of the original article [1], it was reported that the sphere volumes defined in the original article should be adjusted. The correct inner diameters (and volumes) of the spherical inserts were: 9.9mm (0.5 ml), 15.4mm (2.0 ml), 19.8 mm (4.0 ml), 24.8mm (8.0 ml), 31.3mm (16.0 ml) and 60mm (113 ml). Figures 3, 5 and 6 have been adjusted accordingly. The original article has been updated.</p

    Lutetium-177-PSMA-617 in low-volume hormone-sensitive metastatic prostate cancer: A prospective pilot study

    No full text
    Purpose: [177Lu]Lu-PSMA-617 radioligand therapy (177Lu-PSMA) is a novel treatment for metastatic castration-resistant prostate cancer (mCRPC), which could also be applied to patients with metastatic hormone-sensitive prostate cancer (mHSPC) with PSMA expression. In this prospective study (NCT03828838), we analyzed toxicity, radiation doses, and treatment effect of 177Lu-PSMA in pateints with low-volume mHSPC. Patients and Methods: Ten progressive patients with mHSPC following local treatment, with a maximum of ten metastatic lesions on [68Ga]Ga-PSMA-11 PET/diagnostic-CT imaging (PSMA-PET) and serum PSA doubling time <6 months received two cycles of 177Lu-PSMA. Whole-body single-photon emission CT/CT (SPECT/CT) and blood dosimetry was performed to calculate doses to the tumors and organs at risk (OAR). Adverse events (AE), laboratory values (monitoring response and toxicity), and quality of life were monitored until week 24 after cycle 2, the end of study (EOS). All patients underwent PSMA-PET at screening, 8 weeks after cycle 1, 12 weeks after cycle 2, and at EOS. Results: All patients received two cycles of 177Lu-PSMA without complications. No treatment-related grade III–IV adverse events were observed. According to dosimetry, none of the OAR reached threshold doses for radiation-related toxicity. Moreover, all target lesions received a higher radiation dose than the OAR. All 10 patients showed altered PSA kinetics, postponed androgen deprivation therapy, and maintained good quality of life. Half of the patients showed a PSA response of more than 50%. One patient had a complete response on PSMA-PET imaging until EOS and two others had only minimal residual disease. Conclusions: 177Lu-PSMA appeared to be a feasible and safe treatment modality in patients with low-volume mHSPC
    corecore