100 research outputs found

    Nonperturbative renormalization of nonlocal quark bilinears for quasi-PDFs on the lattice using an auxiliary field

    Full text link
    Quasi-PDFs provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary field, we can replace the nonlocal operator with a pair of local operators in an extended theory. On the lattice, this is closely related to the static quark theory. In this approach, we show how to understand the pattern of mixing that is allowed by chiral symmetry breaking, and obtain a master formula for renormalizing the nonlocal operator that depends on three parameters. We present an approach for nonperturbatively determining these parameters and use perturbation theory to convert to the MS-bar scheme. Renormalization parameters are obtained for two lattice spacings using Wilson twisted mass fermions and for different discretizations of the Wilson line in the nonlocal operator. Using these parameters we show the effect of renormalization on nucleon matrix elements with pion mass approximately 370 MeV, and compare renormalized results for the two lattice spacings. The renormalized matrix elements are consistent among the different Wilson line discretizations and lattice spacings.Comment: 6 pages, 6 figures. v2: added perturbative matching to MS-bar and additional reference

    A Lattice Calculation of Parton Distributions

    Full text link
    We present results for the xx dependence of the unpolarized, helicity, and transversity isovector quark distributions in the proton using lattice QCD, employing the method of quasi-distributions proposed by Ji in 2013. Compared to a previous calculation by us, the errors are reduced by a factor of about 2.5. Moreover, we present our first results for the polarized sector of the proton, which indicate an asymmetry in the proton sea in favor of the uu antiquarks for the case of helicity distributions, and an asymmetry in favor of the dd antiquarks for the case of transversity distributions.Comment: DIS2106 Proceeding

    Transversity parton distribution functions from lattice QCD

    Full text link
    We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the lattice spacing. Novel elements of the calculations are non-perturbative renormalization and extraction of a formula for the matching to light-cone PDFs. Final results are presented in the MS‾\overline{\rm MS} scheme at a scale of 2\sqrt{2} GeV.Comment: 6 pages, 3 figures, 1 tabl

    Systematic uncertainties in parton distribution functions from lattice QCD simulations at the physical point

    Full text link
    We present a detailed study of the helicity-dependent and helicity-independent collinear parton distribution functions (PDFs) of the nucleon, using the quasi-PDF approach. The lattice QCD computation is performed employing twisted mass fermions with a physical value of the light quark mass. We give a systematic and in-depth account of the salient features entering in the evaluation of quasi-PDFs and their relation to the light-cone PDFs. In particular, we give details for the computation of the matrix elements, including the study of the various sources of systematic uncertainties, such as excited states contamination. In addition, we discuss the non-perturbative renormalization scheme used here and its systematics, effects of truncating the Fourier transform and different matching prescriptions.Comment: 47 pages, 33 figures, 6 table

    Energy absorption from composite reinforced with high performance auxetic textile structure

    Get PDF
    The objective of this study is to analyze the impact behavior on the basis of energy approach of weft knitted structures, namely a jersey composite and an auxetic composite using high performance yarns. Weft knitted fabrics were produced with the same structural and machine parameters, using 100% para-aramid and hybrid (47% para-aramid and 53% polyamide) structure. Composite fabrication was achieved through hand lay-up using epoxy resin. Negative Poisson ratio of the reinforcing auxetic fabric was transferred from the fabric to the composite developed. Results obtained by drop weight dart impact test show that the impact experiment with different impact loads confirmed the auxetic composites, regardless de material composition, have an increase in the total energy absorption compared to jersey reinforced composite, approximately 2.5 and 4 times more for para-aramid and hybrid composite, respectively. Auxetic composites developed within this work present great potential for applications in different areas, mainly where energy absorption is a key factor to be considered, such as in protection, sports among others

    Parton Distributions from Lattice QCD with Momentum Smearing

    Full text link
    In this work we continue our effort to explore a recent proposal, which allows light-cone distributions to be extracted from purely spatial correlations, being thus accessible to lattice methods. In order to test the feasibility of this method, we present our latest results from a twisted mass lattice calculation of the flavor non-singlet momentum, helicity and transversity distributions of the nucleon. Furthermore, we apply a newly proposed momentum improved smearing, which has the potential to reach higher nucleon momenta as required for a safe matching procedure to the physical distribution functions.Comment: 7 pages, 5 figures, talk given at the 34th annual International Symposium on Lattice Field Theory, 24-30 July 2016, University of Southampton, UK. Revision: Added further references and moved acknowledgements to the bac
    • …
    corecore