15 research outputs found

    On the Economics of Renewable Energy Sources

    Get PDF
    With the global expansion of renewable energy (RE) technologies, the provision of optimal RE policy packages becomes an important task. We review pivotal aspects regarding the economics of renewables that are relevant to the design of an optimal RE policy, many of which are to date unresolved. We do so from three interrelated perspectives that a meaningful public policy framework for inquiry must take into account. First, we explore different social objectives justifying the deployment of RE technologies, including potential co-benefits of RE deployment, and review modelbased estimates of the economic potential of RE technologies, i.e. their socially optimal deployment level. Second, we address pivotal market failures that arise in the course of implementing the economic potential of RE sources in decentralized markets. Third, we discuss multiple policy instruments curing these market failures. Our framework reveals the requirements for an assessment of the relevant options for real-world decision makers in the field of RE policies. This review makes it clear that there are remaining white areas on the knowledge map concerning consistent and socially optimal RE policies

    Loose Capacity-Constrained Representatives for the Qualitative Visual Analysis in Molecular Dynamics

    No full text
    Molecular dynamics is a widely used simulation technique to investigate material properties and structural changes under external forces. The availability of more powerful clusters and algorithms continues to increase the spatial and temporal extents of the simulation domain. This poses a particular challenge for the visualization of the underlying processes which might consist of millions of particles and thousands of time steps. Some application domains have developed special visual metaphors to only represent the relevant information of such data sets but these approaches typically require detailed domain knowledge that might not always be available or applicable. We propose a general technique that replaces the huge amount of simulated particles by a smaller set of representatives that are used for the visualization instead. The representatives capture the characteristics of the underlying particle density and exhibit coherency over time. We introduce loose capacity-constrained Voronoi diagrams for the generation of these representatives by means of a GPU-friendly, parallel algorithm. This way we achieve visualizations that reflect the particle distribution and geometric structure of the original data very faithfully. We evaluate our approach using real-world data sets from the application domains of material science, thermodynamics and dynamical systems theory
    corecore