724 research outputs found

    Computing the Entropy of a Large Matrix

    Full text link
    Given a large real symmetric, positive semidefinite m-by-m matrix, the goal of this paper is to show how a numerical approximation of the entropy, given by the sum of the entropies of the individual eigenvalues, can be computed in an efficient way. An application from quantum-optics illustrates the new algorithm

    The boundary rigidity problem in the presence of a magnetic field

    Full text link
    For a compact Riemannian manifold with boundary, endowed with a magnetic potential α\alpha, we consider the problem of restoring the metric gg and the magnetic potential α\alpha from the values of the Ma\~n\'e action potential between boundary points and the associated linearized problem. We study simple magnetic systems. In this case, knowledge of the Ma\~n\'e action potential is equivalent to knowledge of the scattering relation on the boundary which maps a starting point and a direction of a magnetic geodesic into its end point and direction. This problem can only be solved up to an isometry and a gauge transformation of α\alpha. For the linearized problem, we show injectivity, up to the natural obstruction, under explicit bounds on the curvature and on α\alpha. We also show injectivity and stability for gg and α\alpha in a generic class G\mathcal{G} including real analytic ones. For the nonlinear problem, we show rigidity for real analytic simple gg, α\alpha. Also, rigidity holds for metrics in a given conformal class, and locally, near any (g,α)∈G(g,\alpha)\in \mathcal{G}.Comment: This revised version contains a proof that 2D simple magnetic systems are boundary rigid. Some references have been adde

    Quantitative Photo-acoustic Tomography with Partial Data

    Full text link
    Photo-acoustic tomography is a newly developed hybrid imaging modality that combines a high-resolution modality with a high-contrast modality. We analyze the reconstruction of diffusion and absorption parameters in an elliptic equation and improve an earlier result of Bal and Uhlmann to the partial date case. We show that the reconstruction can be uniquely determined by the knowledge of 4 internal data based on well-chosen partial boundary conditions. Stability of this reconstruction is ensured if a convexity condition is satisfied. Similar stability result is obtained without this geometric constraint if 4n well-chosen partial boundary conditions are available, where nn is the spatial dimension. The set of well-chosen boundary measurements is characterized by some complex geometric optics (CGO) solutions vanishing on a part of the boundary.Comment: arXiv admin note: text overlap with arXiv:0910.250

    MAXILLOFACIAL TRAUMA MANAGEMENT IN POLYTRAUMATIZED PATIENTS – THE USE OF ADVANCED TRAUMA LIFE SUPPORT (ATLS) PRINCIPLES.

    Get PDF
    Management of the multiply injured patient requires a co-ordinated multi-disciplinary approach in order to optimise patients’ outcome. A working knowledge of the sort of problems these patients encounter is therefore vital to ensure that life-threatening injuries are recognised and treated in a timely pattern and that more minor associated injuries are not omitted. This article outlines the management of polytraumatized patients using the Advanced Trauma Life Support (ATLS) principles and highlights the areas of specific involvement of the engaged medical team. Advanced Trauma Life Support is generally regarded as the gold standard and is founded on a number of well known principles, but strict adherence to protocols may have its drawbacks when facial trauma co-exists. These can arise in the presence of either major or minor facial injuries, and oral and maxillofacial surgeons need to be aware of the potential problems

    Thermoacoustic tomography arising in brain imaging

    Full text link
    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary

    Inverse Transport Theory of Photoacoustics

    Full text link
    We consider the reconstruction of optical parameters in a domain of interest from photoacoustic data. Photoacoustic tomography (PAT) radiates high frequency electromagnetic waves into the domain and measures acoustic signals emitted by the resulting thermal expansion. Acoustic signals are then used to construct the deposited thermal energy map. The latter depends on the constitutive optical parameters in a nontrivial manner. In this paper, we develop and use an inverse transport theory with internal measurements to extract information on the optical coefficients from knowledge of the deposited thermal energy map. We consider the multi-measurement setting in which many electromagnetic radiation patterns are used to probe the domain of interest. By developing an expansion of the measurement operator into singular components, we show that the spatial variations of the intrinsic attenuation and the scattering coefficients may be reconstructed. We also reconstruct coefficients describing anisotropic scattering of photons, such as the anisotropy coefficient g(x)g(x) in a Henyey-Greenstein phase function model. Finally, we derive stability estimates for the reconstructions

    Traveling Waves and their Tails in Locally Resonant Granular Systems

    Get PDF
    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. The first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier transformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely the avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of antiresonance conditions is identified for which solutions with genuinely rapidly decaying tails arise
    • …
    corecore