219 research outputs found

    Continuous-variable dense coding by optomechanical cavities

    Full text link
    In this paper, we show how continuous-variable dense coding can be implemented using entangled light generated from a membrane-in-the-middle geometry. The mechanical resonator is assumed to be a high reflectivity membrane hung inside a high quality factor cavity. We show that the mechanical resonator is able to generate an amount of entanglement between the optical modes at the output of the cavity, which is strong enough to approach the capacity of quantum dense coding at small photon numbers. The suboptimal rate reachable by our optomechanical protocol is high enough to outperform the classical capacity of the noiseless quantum channel

    Continuous variable encoding by ponderomotive interaction

    Full text link
    Recently it has been proposed to construct quantum error-correcting codes that embed a finite-dimensional Hilbert space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables [D. Gottesman et al., Phys. Rev. A 64, 012310 (2001)]. The main difficulty of this continuous variable encoding relies on the physical generation of the quantum codewords. We show that ponderomotive interaction suffices to this end. As a matter of fact, this kind of interaction between a system and a meter causes a frequency change on the meter proportional to the position quadrature of the system. Then, a phase measurement of the meter leaves the system in an eigenstate of the stabilizer generators, provided that system and meter's initial states are suitably prepared. Here we show how to implement this interaction using trapped ions, and how the encoding can be performed on their motional degrees of freedom. The robustness of the codewords with respect to the various experimental imperfections is then analyzed.Comment: Revised version - 9 pages, 4 figure
    • …
    corecore