610 research outputs found

    State-space Correlations and Stabilities

    Full text link
    The state-space pair correlation functions and notion of stability of extremal and non-extremal black holes in string theory and M-theory are considered from the viewpoints of thermodynamic Ruppeiner geometry. From the perspective of intrinsic Riemannian geometry, the stability properties of these black branes are divulged from the positivity of principle minors of the space-state metric tensor. We have explicitly analyzed the state-space configurations for (i) the two and three charge extremal black holes, (ii) the four and six charge non-extremal black branes, which both arise from the string theory solutions. An extension is considered for the D6D_6-D4D_4-D2D_2-D0D_0 multi-centered black branes, fractional small black branes and two charge rotating fuzzy rings in the setup of Mathur's fuzzball configurations. The state-space pair correlations and nature of stabilities have been investigated for three charged bubbling black brane foams, and thereby the M-theory solutions are brought into the present consideration. In the case of extremal black brane configurations, we have pointed out that the ratio of diagonal space-state correlations varies as inverse square of the chosen parameters, while the off diagonal components vary as inverse of the chosen parameters. We discuss the significance of this observation for the non-extremal black brane configurations, and find similar conclusion that the state-space correlations extenuate as the chosen parameters are increased.Comment: 35 pages, Keywords: Black Hole Physics, Higher-dimensional Black Branes, State-space Correlations and Statistical Configurations. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related object

    Magnetization Transfer by a Quantum Ring Device

    Full text link
    We show that a tight-binding model device consisting of a laterally connected ring at half filling in a tangent time-dependent magnetic field can in principle be designed to pump a purely spin current. The process exploits the spin-orbit interaction in the ring. This behavior is understood analytically and found to be robust with respect to temperature and small deviations from half filling.Comment: 4 figures, 1 typo correcte

    Correlation functions in one-dimensional spin lattices with Ising and Heisenberg bonds

    Full text link
    A general technique of exact calculation of any correlation functions for the special class of one-dimensional spin models containing small clusters of quantum spins assembled to a chain by alternating with the single Ising spins is proposed. The technique is a natural generalization of that in the models solved by a classical transfer matrix. The general expressions for corresponding matrix operators which are the key components of the technique are obtained. As it is clear from the general principles, the decay of the correlation functions of various types is explicitly shown to be governed by a single correlation length. The technique is illustrated by two examples: symmetric diamond chain and asymmetric sawtooth chain.Comment: 12 pages, 5 figure
    • …
    corecore