124 research outputs found
Preliminary Assessment of sCO2Power Cycles for Application to CSP Solar Tower Plants
This work presents a preliminary thermodynamic assessment of three different supercritical CO2(sCO2) power cycles integrated in a high temperature solar tower system, working up to 800Ă°C. An indirect cycle configuration is considered with KCl-MgCl2molten salt as heat transfer fluid (HTF) in the solar receiver and a two tanks thermal energy storage (TES) system. The most promising cycle configuration is selected, optimizing the cycle turbine inlet temperature to achieve the best compromise between cycle and receiver efficiency. An estimate of the yearly energy yield of the proposed power plant is finally performed, indicating the possibility of reaching solar-to-electric efficiency of about 17.5%
Interaction Between Sulfur and Iron in Plants.
It is well known that S interacts with some macronutrients, such as N, P, and K, as well as with some micronutrients, such as Fe, Mo, Cu, Zn, and B. From our current understanding, such interactions could be related to the fact that: (i) S shares similar chemical properties with other elements (e.g., Mo and Se) determining competition for the acquisition/transport process (SULTR transporter family proteins); (ii) S-requiring metabolic processes need the presence of other nutrients or regulate plant responses to other nutritional deficiencies (S-containing metabolites are the precursor for the synthesis of ethylene and phytosiderophores); (iii) S directly interacts with other elements (e.g., Fe) by forming complexes and chemical bonds, such as Fe-S clusters; and (iv) S is a constituent of organic molecules, which play crucial roles in plants (glutathione, transporters, etc.). This review summarizes the current state of knowledge of the interplay between Fe and S in plants. It has been demonstrated that plant capability to take up and accumulate Fe strongly depends on S availability in the growth medium in both monocots and dicot plants. Moreover, providing S above the average nutritional need enhances the Fe content in wheat grains, this beneficial effect being particularly pronounced under severe Fe limitation. On the other hand, Fe shortage induces a significant increase in the demand for S, resulting in enhanced S uptake and assimilation rate, similar to what happens under S deficiency. The critical evaluation of the recent studies on the modulation of Fe/S interaction by integrating old and new insights gained on this topic will help to identify the main knowledge gaps. Indeed, it remains a challenge to determine how the interplay between S and Fe is regulated and how plants are able to sense environmental nutrient fluctuations and then to adapt their uptake, translocation, assimilation, and signaling. A better knowledge of the mechanisms of Fe/S interaction might considerably help in improving crop performance within a context of limited nutrient resources and a more sustainable agriculture
Potential Use of Copper-Contaminated Soils for Hemp (Cannabis sativa L.) Cultivation.
To mitigate climate change, reducing greenhouse gas emissions can be achieved by decreasing the use of fossil fuels and increasing that of alternative sources, such as energy crops. However, one of the most important problems in the use of biomass as a fuel is that of changing soil use and consumption, leading to competition with food crops. We addressed the topic by evaluating the possibility to exploit contaminated areas for energy crops cultivation. Indeed, soil contamination makes land inappropriate for cultivation, with damaging consequences for ecosystems, as well as posing serious health hazards to living beings. Specifically, this work aimed to evaluate the ability of hemp (Cannabis sativa L.) plants to grow on a copper (Cu)-contaminated medium. In addition, the effectiveness of an environment-friendly treatment with sulfate in improving plant ability to cope with Cu-induced oxidative stress was also explored. Results showed that plants were able to grow at high Cu concentrations. Therefore, hemp could represent an interesting energy crop in Cu-contaminated soils. Although the response of Cu-treated plants was evidenced by the increase in thiol content, following modulation of sulfur metabolism, it remains to be clarified whether the use of exogenous sulfate could be an agronomic practice to improve crop performance under these edaphic conditions
Evaluation of a Legume-Derived Protein Hydrolysate to Mitigate Iron Deficiency in Plants.
Biostimulants play an important role in the development of management practices able to reach adequate productivity to meet the food demand of a growing world population, while following a sustainable agriculture model. This work aims to evaluate the effect of a protein hydrolysate derived from legume seeds by enzymatic hydrolysis on plant growth and also to verify its ability to mitigate Fe deficiency, a widespread problem significantly limiting plant growth and crop productivity. Experiments were performed with tomato (Solanum lycopersicum L.-cv. AKRAI F1) and cucumber (Cucumis sativus L.-cv. EKRON F1). The plants were grown hydroponically under adequate or limited Fe supply. Changes in shoot and root fresh weight, leaf relative chlorophyll content and the accumulation of macro- and microelements in shoots and roots were measured. Plant ability to cope with Fe deficiency was measured by evaluating the activity of root Fe3+-chelate reductase. Our results indicate that the foliar treatments with the protein hydrolysate did not significantly affect growth parameters when plants were grown in full nutrient solution. However, the biostimulant was able to improve the growth performance of Fe-deficient plants. Therefore, the protein hydrolysate can be a powerful tool to stimulate crop growth under Fe-deficient environments, leading to reduced fertilizer inputs with related environmental and economic benefits
Deciphering the Molecular Recognition Mechanism of Multidrug Resistance Staphylococcus aureus NorA Efflux Pump Using a Supervised Molecular Dynamics Approach
The use and misuse of antibiotics has resulted in critical conditions for drug-resistant bacteria emergency, accelerating the development of antimicrobial resistance (AMR). In this context, the co-administration of an antibiotic with a compound able to restore sufficient antibacterial activity may be a successful strategy. In particular, the identification of efflux pump inhibitors (EPIs) holds promise for new antibiotic resistance breakers (ARBs). Indeed, bacterial efflux pumps have a key role in AMR development; for instance, NorA efflux pump contributes to Staphylococcus aureus (S. aureus) resistance against fluoroquinolone antibiotics (e.g., ciprofloxacin) by promoting their active extrusion from the cells. Even though NorA efflux pump is known to be a potential target for EPIs development, the absence of structural information about this protein and the little knowledge available on its mechanism of action have strongly hampered rational drug discovery efforts in this area. In the present work, we investigated at the molecular level the substrate recognition pathway of NorA through a Supervised Molecular Dynamics (SuMD) approach, using a NorA homology model. Specific amino acids were identified as playing a key role in the efflux pump-mediated extrusion of its substrate, paving the way for a deeper understanding of both the mechanisms of action and the inhibition of such efflux pumps
Interaction between Sulfate and Selenate in Tetraploid Wheat (Triticum turgidum L.) Genotypes
Selenium (Se) is an essential micronutrient of fundamental importance to human health and the main Se source is from plant-derived foods. Plants mainly take up Se as selenate (SeO42â), through the root sulfate transport system, because of their chemical similarity. The aims of this study were (1) to characterize the interaction between Se and S during the root uptake process, by measuring the expression of genes coding for high-affinity sulfate transporters and (2) to explore the possibility of increasing plant capability to take up Se by modulating S availability in the growth medium. We selected different tetraploid wheat genotypes as model plants, including a modern genotype, Svevo (Triticum turgidum ssp. durum), and three ancient Khorasan wheats, Kamut, Turanicum 21, and Etrusco (Triticum turgidum ssp. turanicum). The plants were cultivated hydroponically for 20 days in the presence of two sulfate levels, adequate (S = 1.2 mM) and limiting (L = 0.06 mM), and three selenate levels (0, 10, 50 ÎŒM). Our findings clearly showed the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3), which are involved in the primary uptake of sulfate from the rhizosphere. Interestingly, Se accumulation in shoots was higher when S was limited in the nutrient solution
Indoor environmental quality and global comfort: An in-field study in workspaces
The EN 16798-1 specifies the requirements to assess indoor environmental quality (IEQ) considering thermal, air quality, lighting and acoustics domains. A drawback of the standard is that it is based on an objective evaluation approach and does not account for the subjective perception. Also, the standard does not assess global IEQ nor comfort as a single index for the interaction of all the domains. This work tests the metrics proposed in the standard relating them to the occupantsâ evaluations. An in-field monitoring campaign was performed in the ARPA headquarter in Aosta (Italy), acquiring quantities to be correlated with the subjective perception of IEQ gained through surveys. An insight on the possible approach to communicate IEQ and comfort feedbacks to the occupants was investigated to promote their awareness. Preliminary results show that the occupantsâ perception can be predicted by adopting the approach proposed in EN 16798-1 in the case of thermal comfort, but limitations emerge about air quality, lighting and acoustics. Such result allows investigating how the environmental variables considered by the standard (e.g., the maximum sound pressure level or the maximum CO2 concentration) can be adopted as predictors of comfort, thus how new parameters and assessment methods should be introduced
- âŠ