381 research outputs found
Left ventricular outflow tract false aneurysm late after aortic valve replacement.
Heart Surg Forum 2005; 8(3): E136-9
Carcinosarcoma of the colon: report of a case with morphological, ultrastructural and molecular analysis
BACKGROUND: Carcinosarcoma of the colon is a rare histopathological entity with uncertain histogenesis, that shows both epithelial and mesenchymal malignant differentiation. Carcinosarcoma rarely affects the gastrointestinal tract and only few cases are reported in the colon. Herein we describe a carcinosarcoma of the ascending colon, with morphological, ultrastructural and molecular analysis. CASE PRESENTATION: An 81-year-old man was hospitalised for asthenia, weight loss and iron-deficiency anaemia. The patient underwent colonoscopy and adenocarcinoma was diagnosed by endoscopic biopsy. A right hemicolectomy was performed and, during surgical operation, liver metastases were detected. Histological examination of the surgical specimen revealed areas of both carcinomatous and sarcomatous differentiation, completely separated by fibrous septae. The sarcomatous component exhibited areas of smooth muscle and osteoblastic differentiation, with focal osteoid material deposition. Molecular analysis conducted separately on the epithelial and mesenchymal components revealed the same p53 gene mutation (R282W in exon 8) and identical polymorphisms in p53 exon 4, in EGFR exons 20 and 21, and in c-kit exon 17. Microsatellite markers analysis revealed a common loss of heterozygosis on 18q. Overall, the data are consistent with a common origin of the two tumor components. The patient was treated with 8 cycles of oral capecitabine (1250 mg/m(2 )twice a day for 14 days repeated every 28 days) and two years after surgery is alive with liver metastases. CONCLUSION: Carcinosarcoma of the colon is a rare tumour with both epithelial and sarcomatous components. Molecular analysis of the current case suggests the histogenesis from a common cell progenitor
Allergic diseases in the elderly: biological characteristics and main immunological and non-immunological mechanisms
Life expectancy and the number of elderly people are progressively increasing around the world. Together with other pathologies, allergic diseases also show an increasing incidence in geriatric age. This is partly due to the growing emphasis on a more accurate and careful diagnosis of the molecular mechanisms that do not allow to ignore the real pathogenesis of many symptoms until now unknown, and partly to the fact that the allergic people from 20 years ago represent the elderly population now. Moreover, environmental pollution predisposes to the onset of allergic asthma and dermatitis which are the result of internal pathologies more than the expression of allergic manifestations. At the same time the food contamination permits the onset of allergic diseases related to food allergy. In this review we provide the state of the art on the physiological changes in the elderly responsible for allergic diseases, their biological characteristics and the major immunological and extra immunological mechanisms. Much emphasis is given to the management of several diseases in the elderly, including anaphylactic reactions. Moreover, some new features are discussed, such as management of asthma with the support of physical activity and the use of the AIT as prevention of respiratory diseases and for the purpose of a real and long lasting benefit. The mechanisms of adverse reactions to drugs are also discussed, due to their frequency in this age, especially in polytherapy regimens. Study of the modifications of the immune system is also of great importance, as regards to the distribution of the lymphocytes and also the presence of a chronic inflammatory disease related to the production of cytokines, especially in prevision of all the possible therapies to be adopted to allow an active and healthy agin
Constraints on the Progenitor System of the Type Ia Supernova SN 2011fe/PTF11kly
Type Ia supernovae (SNe) serve as a fundamental pillar of modern cosmology,
owing to their large luminosity and a well-defined relationship between
light-curve shape and peak brightness. The precision distance measurements
enabled by SNe Ia first revealed the accelerating expansion of the universe,
now widely believed (though hardly understood) to require the presence of a
mysterious "dark" energy. General consensus holds that Type Ia SNe result from
thermonuclear explosions of a white dwarf (WD) in a binary system; however,
little is known of the precise nature of the companion star and the physical
properties of the progenitor system. Here we make use of extensive historical
imaging obtained at the location of SN 2011fe/PTF11kly, the closest SN Ia
discovered in the digital imaging era, to constrain the visible-light
luminosity of the progenitor to be 10-100 times fainter than previous limits on
other SN Ia progenitors. This directly rules out luminous red giants and the
vast majority of helium stars as the mass-donating companion to the exploding
white dwarf. Any evolved red companion must have been born with mass less than
3.5 times the mass of the Sun. These observations favour a scenario where the
exploding WD of SN 2011fe/PTF11kly, accreted matter either from another WD, or
by Roche-lobe overflow from a subgiant or main-sequence companion star.Comment: 22 pages, 6 figures, submitte
Explorative visual analytics on interval-based genomic data and their metadata
Background: With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable interactive analytics, an exploratory approach for the seamless "sense-making" of data through on-the-fly integration of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and adapting NGS data analysis pipelines. Results: This paper presents abstractions for supporting the early analysis of NGS processed data and their implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative visualizations of heatmaps. Conclusions: GeMSE effective application and practical usefulness is demonstrated through significant use cases of biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/ , and its source code is available at https://github.com/Genometric/GeMSEunder GPLv3 open-source license
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planetâs birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25â7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10â100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed â using conservative estimates of mission performance and a full model of all significant noise sources in the measurement â using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL â in line with the stated mission objectives â will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
- âŠ