3,038 research outputs found

    Opioid peptides and opiate alkaloids in immunoregulatory processes

    Get PDF
    Among the various non-neuronal cell types known to express and utilize neuropeptides, those of the immune system have received much attention in recent years. In particular, comparative studies in vertebrates and invertebrates have shown that endogenous opioid peptides are engaged in receptor mediated autoregulatory immune and neuroendocrine processes. The majority of these immune processes are stimulatory, as determined by their effects on conformational changes indicative of immunocyte activation, cellular motility, and phagocytosis. Endogenous opioid peptides form an effective network of messenger molecules in cooperation with cytokines, opiate alkaloids, and certain regulatory enzymes (neutral endopeptidase 24.11). Peptide-mediated immunostimulatory effects observed in this system are operationally counteracted by the inhibitory effects of morphine and related opiates. Opioid/opiate signaling processes are mediated by several types of receptors with different degrees of selectivity. Among them the recently identified, opioid insensitive µ3 receptor deserves attention on account of its specificity for opiate alkaloids

    Interactive effects of endogenous morphine, nitric oxide, and ethanol on mitochondrial processes

    Get PDF
    Positive evolutionary pressure has preserved the ability to synthesize chemically authentic morphine, albeit in homeopathic concentrations, throughout animal phyla. The prototype catecholamine dopamine (DA) serves as an essential chemical intermediate in morphine biosynthesis both in plants and animals, thereby providing considerable insight into the roles reciprocal “morphinergic” and catecholamine regulation of diverse physiological processes. Primordial, multi-potential cell types, before the emergence of specialized plant and animal cells/organ systems, required selective mechanisms to limit their responsiveness to environmental noise. Accordingly, cellular systems that emerged with the potential for recruitment of the free radical gas nitric oxide (NO) as a multi-faceted autocrine/paracrine signaling molecule were provided with extremely positive evolutionary advantages. Endogenous “morphinergic” in concert with NO-coupled signaling systems have evolved as autocrine/paracrine regulators of metabolic homeostasis, energy metabolism, mitochondrial respiration and energy production. Basic physiological processes involving “morphinergic”/NO-coupled regulation of cardiovascular mitochondrial function, with special emphasis on the interactive effects of ethanol, are discussed within the context of our review

    Catechol-O-methyltransferase: potential relationship to idiopathic hypertension

    Get PDF
    Catecholamine signaling pathways in the peripheral and central nervous systems (PNS, CNS, respectively) utilize catechol-O-methyltransferase (COMT) as a major regulatory enzyme responsible for deactivation of dopamine (DA), norepinephrine (NE) and epinephrine (E). Accordingly, homeostasis of COMT gene expression is hypothesized to be functionally linked to regulation of autonomic control of normotensive vascular events. Recently, we demonstrated that morphine administration in vitro resulted in decreased cellular concentrations of COMT-encoding mRNA levels, as compared to control values. In contrast, cells treated with E up regulated their COMT gene expression. In sum, these observations indicate a potential reciprocal linkage between end product inhibition of COMT gene expression by E and morphine. Interestingly, the observed effects of administered E on COMT gene expression suggest an enhancement of its own catabolism or, reciprocally, a stimulation morphine biosynthesis

    SSCP-based identification of members within the Pseudoterranova decipiens complex (Nematoda : Ascaridoidea : Anisakidae) using genetic markers in the internal transcribed spacers of ribosomal DNA

    Get PDF
    The anisakid nematodes morphologically corresponding with Pseudoterranova decipiens sensu lato (s.l.) (Krabbe, 1878) from different seal or sea lion hosts and geographical origins, previously identified as Pseudoterranova krabbei, P. decipiens (s.s.), P. bulbosa, P. azarasi and P. cattani by multilocus enzyme electrophoresis, were characterized using a DNA approach. Also a population of P. decipiens (s.l.) from Chaenocephalus aceratus, the blackfin icefish, from Antarctica and another from Osmerus eperlanus, the European smelt, from Germany were included in the study. The first (ITS-1) and second (ITS-2) internal transcribed spacers (ITS) of ribosomal DNA (rDNA) were amplified by PCR from individual nematodes and analysed by single-strand conformation polymorphism (SSCP), followed by selective sequencing. While no variation in single-stranded ITS-1 and ITS-2 profiles was detected among samples representing each of the species or populations (with the exception of slight microheterogeneity), SSCP analysis of the ITS-2 amplicons allowed the unequivocal differentiation of all of the 5 sibling species of P. decipiens (s.l.) examined, which was supported by sequence differences in ITS rDNA. Samples representing the P. decipiens (s.l.) population from O. eperlanus had the same SSCP profile as those of P. decipiens (s.s.), which was supported by a lack of nucleotide difference in the ITS between them, suggesting that the former represented P. decipiens (s.s.). Based on SSCP results and ITS sequence data, P. decipiens (s.l.) from C. aceratus was genetically most distinct with respect to all other members of Pseudoterranova examined, which indicated that it may represent P. decipiens E (based on geographical origin) or a distinct species. These findings and the molecular approach taken should have important implications for studying the life-cycles, transmission patterns, epidemiology and population genetics of these anisakid nematodes, and the diagnosis of their infections

    The Effects of Auditory Perception and Musical Preference on Anxiety in Naive Human Subjects

    Get PDF
    Background: The use of music as a method of relieving anxiety has been studied extensively by researchers from varying disciplines. The abundance of these reports focused on which genre of music best aided in the relief of stress. Little work has been performed in the area of auditory preference in an attempt to ascertain whether an individual’s preferred music type aids in their anxiety reduction at levels greater than music that they have little or no propensity for. Material/Methods: In the present report we seek to determine whether naive human subjects exposed to music of their preference show a decrease in anxiety, as measured by systolic and diastolic blood pressure values. We furthermore contrast these values to those obtained during non-preferred music listening. Results: We found statistically significant reduction of anxiety levels only when subjects were exposed to their preferred musical selections. Conclusions: Students participating in the study already had knowledge of what genre of music would best relax them. It is our belief, that within the general population, many people do not have this self understanding. We conclude that music therapy may provide a mechanism for this self-understanding and subsequently help alleviate anxiety and stress
    • …
    corecore