4,158 research outputs found

    RISK ASSESSMENT OF MALICIOUS ATTACKS AGAINST POWER SYSTEMS

    Get PDF
    The new scenarios of malicious attack prompt for their deeper consideration and mainly when critical systems are at stake. In this framework, infrastructural systems, including power systems, represent a possible target due to the huge impact they can have on society. Malicious attacks are different in their nature from other more traditional cause of threats to power system, since they embed a strategic interaction between the attacker and the defender (characteristics that cannot be found in natural events or systemic failures). This difference has not been systematically analyzed by the existent literature. In this respect, new approaches and tools are needed. This paper presents a mixed-strategy game-theory model able to capture the strategic interactions between malicious agents that may be willing to attack power systems and the system operators, with its related bodies, that are in charge of defending them. At the game equilibrium, the different strategies of the two players, in terms of attacking/protecting the critical elements of the systems, can be obtained. The information about the attack probability to various elements can be used to assess the risk associated with each of them, and the efficiency of defense resource allocation is evidenced in terms of the corresponding risk. Reference defense plans related to the online defense action and the defense action with a time delay can be obtained according to their respective various time constraints. Moreover, risk sensitivity to the defense/attack-resource variation is also analyzed. The model is applied to a standard IEEE RTS-96 test system for illustrative purpose and, on the basis of that system, some peculiar aspects of the malicious attacks are pointed ou

    Motion of an impurity in a two-leg ladder

    Get PDF
    We study the motion of an impurity in a two-leg ladder interacting with two fermionic baths along each leg, a simple model bridging cold atom quantum simulators with an idealized description of the basic transport processes in a layered heterostructure. Using the linked-cluster expansion, we obtain exact analytical results for the single-particle Green's function and find that the long-time behavior is dominated by an intrinsic orthogonality catastrophe associated to the motion of the impurity in each one-dimensional chain. We explore both the case of two identical legs as well as the case where the legs are characterized by different interaction strengths: In the latter case, we observe a subleading correction which can be relevant for intermediate-time transport at an interface between different materials. In all the cases, we do not find significant differences between the intra- and interleg Green's functions in the long-time limit

    A scalable system for microcalcification cluster automated detection in a distributed mammographic database

    Get PDF
    A computer-aided detection (CADe) system for microcalcification cluster identification in mammograms has been developed in the framework of the EU-founded MammoGrid project. The CADe software is mainly based on wavelet transforms and artificial neural networks. It is able to identify microcalcifications in different datasets of mammograms (i.e. acquired with different machines and settings, digitized with different pitch and bit depth or direct digital ones). The CADe can be remotely run from GRID-connected acquisition and annotation stations, supporting clinicians from geographically distant locations in the interpretation of mammographic data. We report and discuss the system performances on different datasets of mammograms and the status of the GRID-enabled CADe analysis.Comment: 6 pages, 4 figures; Proceedings of the IEEE NNS and MIC Conference, October 23-29, 2005, Puerto Ric

    Oscillations above the barrier in the fusion of 28Si + 28Si

    Get PDF
    Fusion cross sections of 28Si + 28Si have been measured in a range above the barrier with a very small energy step (DeltaElab = 0.5 MeV). Regular oscillations have been observed, best evidenced in the first derivative of the energy-weighted excitation function. For the first time, quite different behaviors (the appearance of oscillations and the trend of sub-barrier cross sections) have been reproduced within the same theoretical frame, i.e., the coupled-channel model using the shallow M3Y+repulsion potential. The calculations suggest that channel couplings play an important role in the appearance of the oscillations, and that the simple relation between a peak in the derivative of the energy-weighted cross section and the height of a centrifugal barrier is lost, and so is the interpretation of the second derivative of the excitation function as a barrier distribution for this system, at energies above the Coulomb barrier.Comment: submitted to Physics Letters

    Bayesian estimation of range for microsatellite loci.

    Get PDF
    Microsatellite loci have become important in population genetics because of their high level of polymorphism in natural populations, very frequent occurrence throughout the genome, and apparently high mutation rate. Observed repeat numbers (alleles size) in natural populations and expectations based on computer simulations suggest that the range of repeat numbers at a microsatellite locus is restricted. This range is a key parameter that should be properly estimated in order to proceed with calculations of divergence times in phylogenetic studies and to better investigate the within- and between-population variability. The 'plug-in' estimate of range based on the minimum and maximum value observed in a sample is not satisfactory because of the relatively large number of alleles in comparison with typical sample sizes. In this paper, a set of data from 30 dinucleotide microsatellite loci is analysed under the assumption of independence among loci. Bayesian inference on range for one locus is obtained by assuming that constraints on range values exist as sharp bounds. Closed-form calculations and robustness revealed by our analysis suggest that the proposed Bayesian approach might be routinely used by researchers to classify microsatellite loci according to the estimated value of their allelic range

    Higher in-hospital mortality during weekend admission for acute coronary syndrome: a large-scale cross-sectional Italian study

    Get PDF
    AIMS: An increased mortality risk during weekend hospital admission has been consistently observed. In the present study, we evaluated whether the current improvement in management of acute coronary syndromes (ACS) has reduced this phenomenon. METHODS AND RESULTS: We extracted data from the Italian National Healthcare System Databank of 80\u200a391 ACS admissions in the region of Lombardia between 2010 and 2014. ICD-9 codes were used to assess the diagnosis. We performed a multiple logistic regression analysis to compare the mortality rates between weekend and weekday admissions.Mean age of the study population was 67.6 years; 30.1% of patients were women. ST segment elevation myocardial infarction (STEMI) accounts for 42.2% of admissions. The total in-hospital mortality was 3.05% and was positively predicted by weekend admission [odds ratio (OR) 1.13, P\u200a=\u200a0.006], age and female sex. The weekend effect on mortality was only significant for STEMI (OR 1.11, P\u200a=\u200a0.04) in comparison to non-STEMI (NSTEMI) or unstable angina.The trend of the risk of death was found to be negatively correlated with age: the risk of death was significantly higher in all age clusters younger than 75 (OR 1.22, P\u200a<\u200a0.01) and even greater in the very young subgroup under 45 years of age (OR 2.09, P\u200a=\u200a0.03). CONCLUSION: Our data indicate that increased mortality risk is still present during weekend admissions. This phenomenon is particularly evident in younger patients and in individuals admitted for STEMI
    • 

    corecore