5 research outputs found
Synthesis, characterisation and in-vitro cytotoxicity of mixed ligand Pt(II) oxadiazoline complexes with hexamethylenetetramine and 7-nitro-1,3,5-triazaadamantane.
Trans-platinum(II) oxadiazoline complexes with 7-nitro-1,3,5-triazaadamantane (NO2-TAA) or hexamethylenetetramine (hmta) ligands have been synthesised from trans-[PtCl2(PhCN)2] via cycloaddition of nitrones to one of the coordinated nitriles, followed by exchange of the other nitrile by NO2-TAA or hmta. Stoichiometric control allows for the selective synthesis of mono- and dinuclear complexes where 7-NO2TAA and hmta act as mono- and bidentate ligands, respectively. Precursors and the target complexes trans-[PtCl2(hmta)(oxadiazoline)], trans-[PtCl2(NO2-TAA)(oxadiazoline)] and trans-[{PtCl2(oxadiazoline)}2(hmta)] were characterised by elemental analysis, IR and multinuclear (1H, 13C, 195Pt) NMR spectroscopy. DFT (B3LYP/6-31G*/LANL08) and AIM calculations suggest a stronger bonding of hmta with the [PtCl2(oxadiazoline)] fragment, in agreement with the experimentally observed reactivity in the ligand exchange (hmta > 7-NO2TAA). Replacement of the nitrile by hmta is predicted more exothermic than that with 7-NO2-TAA, although the activation barriers are similar. Protonation of the non-coordinated N atoms is anticipated to weaken the Pt-N bond and lower the activation barrier for ligand exchange. This effect might help activate these compounds in a slightly acidic environment such as some tumour tissues. Ten of the new compounds were tested for their in vitro cytotoxicity in the human cancer cell lines HeLa and A549. Some of the mononuclear complexes are more potent than cisplatin, and their activity is still high in A549 where cisplatin shows little effect. The dinuclear complexes are inactive, presumably due to their lipophilicity and reduced solubility in water
Supramolecular Peptide Nanofibrils with Optimized Sequences and Molecular Structures for Efficient Retroviral Transduction
Amyloid-like peptide nanofibrils (PNFs) are abundant in nature providing rich bioactivities and playing both functional and pathological roles. The structural features responsible for their unique bioactivities are, however, still elusive. Supramolecular nanostructures are notoriously challenging to optimize, as sequence changes affect self-assembly, fibril morphologies and biorecognition. Herein, we report the first sequence optimization of PNFs for enhanced retroviral gene transduction via a multiparameter and a multiscale approach. Retroviral gene transfer is the method of choice for stable delivery of genetic information into cells offering great perspectives for the treatment of genetic disorders. Single fibril imaging, zeta potential, vibrational spectroscopy and quantitative retroviral transduction assays provided the structure parameters responsible for PNF assembly, fibril morphologies and PNF-virus-cell interactions. Optimized peptide sequences have been obtained quantitatively forming supramolecular nanofibrils with high intermolecular beta-sheet content that efficiently bound virions and attached to cellular membranes revealing efficient retroviral gene transfe
Supramolecular peptide nanofibrils with optimized sequences and molecular structures for efficient retroviral transduction
Amyloidâlike peptide nanofibrils (PNFs) are abundant in nature providing rich bioactivities and playing both functional and pathological roles. The structural features responsible for their unique bioactivities are, however, still elusive. Supramolecular nanostructures are notoriously challenging to optimize, as sequence changes affect selfâassembly, fibril morphologies, and biorecognition. Herein, the first sequence optimization of PNFs, derived from the peptide enhancing factorâC (EFâC, QCKIKQIINMWQ), for enhanced retroviral gene transduction via a multiparameter and a multiscale approach is reported. Retroviral gene transfer is the method of choice for the stable delivery of genetic information into cells offering great perspectives for the treatment of genetic disorders. Single fibril imaging, zeta potential, vibrational spectroscopy, and quantitative retroviral transduction assays provide the structure parameters responsible for PNF assembly, fibrils morphology, secondary and quaternary structure, and PNFâvirusâcell interactions. Optimized peptide sequences such as the 7âmer, CKFKFQF, have been obtained quantitatively forming supramolecular nanofibrils with high intermolecular ÎČâsheet content that efficiently bind virions and attach to cellular membranes revealing efficient retroviral gene transfer.<br/