4 research outputs found
Development and Process Integration of an Alternative Demoulding System for High-Pressure Die Casting Using a Contoured Vacuum Mask
This study presents the development and process integration of an alternative demoulding system for high-pressure die casting. The system is aimed at the removal of large structural castings, which are becoming increasingly popular in the industry under the terms mega- and gigacasting. The development differs from conventional systems in the fact that it completely avoids ejectors and realises the demoulding via the principle of vacuum suction cups. Preliminary tests were carried out in which various established materials for vacuum cups were initially identified and the suitability of the selected cup concept was investigated by varying influencing variables from the high-pressure die casting. These tests showed that a suction pad material combination of an elastomer with a thermal barrier and an aramid felt on the surface provides the best results under the given process boundary conditions. Based on this, a multi-segmented vacuum mask with contour adaptation to the casting to be removed was developed. This vacuum mask is used to build up the holding force between the casting and the removal device. The necessary removal force is applied via pneumatic cylinders. The functional capability of the concept and the system integration was verified by experiments on a real die-casting mould for test specimens. The shrinkage and demoulding process can be successfully modelled in the simulation and the real measured demoulding force is only approx. 15% higher than in the simulation. During demoulding in the high-pressure die-casting process, vacuums of up to 88.7% were achieved at temperatures up to 395 °C
Development and Process Integration of an Alternative Demoulding System for High-Pressure Die Casting Using a Contoured Vacuum Mask
Gefördert im Rahmen des Projekts DEA
A Comparative Differential Scanning Calorimetry Study of Precipitation Hardenable Copper-Based Alloys with Optimized Strength and High Conductivity
Copper alloys with chromium, hafnium, and scandium combining enhanced strength as well as high electrical and thermal conductivity are analyzed in depth. The aim is to compare the precipitation process during temperature exposure to meet increasing material requirements. This research focuses on alloying elements having a limited, maximum 1 wt.%, and with temperature decreasing solubility in copper. For the simultaneous enhancement of mechanical strength and conductivity, precipitation hardening is the utilized mechanism during the processing of as-casted annealed and quenched specimens and in combination with optional cold-rolling prior to the aging process. Extensive DSC measurements, accompanied by metallographic investigations, and the analysis of hardness and electrical conductivity, lead to a versatile description and comparison of different alloying systems. CuCr0.7 starts to precipitate early and is mainly influenced by the temperature of aging. Provoking the solid solution with cold deformation has a less significant influence on the following precipitation. CuSc0.3 and CuHf0.7 precipitate at higher temperatures and are highly influenced by cold deformation prior to aging. Furthermore, CuHf0.7 and CuSc0.3 show advantages regarding the recrystallization behavior, making them especially applicable for higher operating temperatures. Future research will assess ternary alloy combinations to further scoop the potential
Analyzing the Precipitation Effects in Low-Alloyed Copper Alloys Containing Hafnium and Chromium
Copper alloys containing chromium and hafnium combine elevated mechanical strength and high electrical and thermal conductivity. For the simultaneous enhancement of both material properties, precipitation hardening is the utilized mechanism. Therefore, the aim is to analyze the influence of chromium and hafnium in binary and ternary low-alloyed copper alloys and to compare the precipitation processes during temperature exposure. Atom probe tomography (APT) and differential scanning calorimetry (DSC) measurements enable to understand the precipitation sequence in detail. CuCr0.7 starts to precipitate directly, whereas CuHf0.7 is highly influenced by prior diffusion facilitating cold rolling. Within the ternary alloy, hafnium atoms accumulate at the shell of mainly Cr-containing precipitates. Increasing the local hafnium concentration results in the formation of intermetallic CuHf precipitates at the sites of mainly Cr-containing precipitates. Indirect methods are utilized to investigate the materials’ properties and show the impact of cold rolling prior to an aging treatment on binary alloys CuCr and CuHf. Finally, ternary alloys combine the benefits of facilitated precipitation processes and decelerated growing and coarsening, which classifies the alloys to be applicable for usage at elevated temperatures