2,341 research outputs found
App-based feedback on safety to novice drivers: learning and monetary incentives
An over-proportionally large number of car crashes is caused by novice drivers. In a field experiment, we investigated whether and how car drivers who had recently obtained their driving license reacted to app-based feedback on their safety-relevant driving behavior (speeding, phone usage, cornering, acceleration and braking). Participants went through a pre-measurement phase during which they did not receive app-based feedback but driving behavior was recorded, a treatment phase during which they received app-based feedback, and a post-measurement phase during which they did not receive app-based feedback but driving behavior was recorded. Before the start of the treatment phase, we randomly assigned participants to two possible treatment groups. In addition to receiving app-based feedback, the participants of one group received monetary incentives to improve their safety-relevant driving behavior, while the participants of the other group did not. At the beginning and at the end of experiment, each participant had to fill out a questionnaire to elicit socio-economic and attitudinal information.
We conducted regression analyses to identify socio-economic, attitudinal, and driving-behavior-related variables that explain safety-relevant driving behavior during the pre-measurement phase and the self-chosen intensity of app usage during the treatment phase. For the main objective of our study, we applied regression analyses to identify those variables that explain the potential effect of providing app-based feedback during the treatment phase on safety-relevant driving behavior. Last, we applied statistical tests of differences to identify self-selection and attrition biases in our field experiment.
For a sample of 130 novice Austrian drivers, we found moderate improvements in safety-relevant driving skills due to app-based feedback. The improvements were more pronounced under the treatment with monetary incentives, and for participants choosing higher feedback intensities. Moreover, drivers who drove relatively safer before receiving app-based feedback used the app more intensely and, ceteris paribus, higher app use intensity led to improvements in safety-related driving skills. Last, we provide empirical evidence for both self-selection and attrition biases
Bicycle helmet use and non-use - recently published research
Bicycle traumata are very common and especially neurologic complications lead to disability and death in all stages of the life. This review assembles the most recent findings concerning research in the field of bicycle traumata combined with the factor of bicycle helmet use. The area of bicycle trauma research is by nature multidisciplinary and relevant not only for physicians but also for experts with educational, engineering, judicial, rehabilitative or public health functions. Due to this plurality of global publications and special subjects, short time reviews help to detect recent research directions and provide also information from neighbour disciplines for researchers. It can be stated that to date, that although a huge amount of research has been conducted in this area more studies are needed to evaluate and improve special conditions and needs in different regions, ages, nationalities and to create successful prevention programs of severe head and face injuries while cycling. Focus was explicit the bicycle helmet use, wherefore sledding, ski and snowboard studies were excluded and only one study concerning electric bicycles remained due to similar motion structures within this review. The considered studies were all published between January 2010 and August 2011 and were identified via the online databases Medline PubMed and ISI Web of Science
Influenza : a scientometric and density-equalizing analysis
Background: Novel influenza in 2009 caused by H1N1, as well as the seasonal influenza, still are a challenge for the public health sectors worldwide. An increasing number of publications referring to this infectious disease make it difficult to distinguish relevant research output. The current study used scientometric indices for a detailed investigation on influenza related research activity and the method of density equalizing mapping to make the differences of the overall research worldwide obvious. The aim of the study was to compare scientific effort over the time as well as geographical distribution including the cooperation on national and international level.
Methods: Therefore, publication data was retrieved from Web of Science (WoS) of Thomson Scientific. Subsequently the data was analysed in order to show geographical distributions and the development of the research output over the time.
The query retrieved 51,418 publications that are listed in WoS for the time interval from 1900 to 2009. There is a continuous increase in research output and general citation activity especially since 1990.
Results: The identified all in all 51,418 publications were published by researchers from 151 different countries. Scientists from the USA participate in more than 37 percent of all publications, followed by researchers from the UK and Germany with more than five percent. In addition, the USA is in the focus of international cooperation.
In terms of number of publications on influenza, the Journal of Virology ranks first, followed by Vaccine and Virology. The highest impact factor (IF 2009) in this selection can be established for The Lancet (30.75). Robert Webster seems to be the most prolific author contributing the most publications in the field of influenza.
Conclusions: This study reveals an increasing and wide research interest in influenza. Nevertheless, citation based-declaration of scientific quality should be considered critically due to distortion by self-citation and co-authorship
Car indoor air pollution - analysis of potential sources
The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future
Existence of similarity profiles for diffusion equations and systems
We study the existence of self-similar profiles for diffusion equations and reaction-diffusion systems on the real line, where different nontrivial limits are imposed at both sides of infinity. The theses profiles solve a coupled system of nonlinear ODEs that can be treated by monotone operator theory
Examining User Perceptions of Brain-Computer Interfaces for Practical Applications: An Exploratory Study
The idea of controlling technology with your thoughts only is becoming reality with the emergence of consumer-grade Brain-Computer Interfaces (BCI). Understanding how regular users perceive this innovative way of controlling their devices is crucial, as it offers a more seamless and intuitive method of interacting with technology. Despite the improving capabilities and smaller form factor of BCI, its potential usage by non-medical users remains largely unexplored. In this research, we address this gap in a mixed-methods approach. In (n=26) qualitative interviews we explore users’ perception of BCI technology and identify its impact on users’ attitudinal and behavioral outcomes. Our findings reveal that users consider their perception as a cyborg and the device\u27s functionality when deciding on their intention to interact with BCI, dependent whether BCI used for individual or organizational interaction. We employ a pre-study (n=189) and multiple experimental studies to empirically triangulate and quantify findings from qualitative interviews
Convergence to self-similar profiles in reaction-diffusion systems
We study a reaction-diffusion system on the real line, where the reactions of the species are given by one reversible reaction pair satisfying the mass-action law. We describe different positive limits at both sides of infinityand investigate the long-time behavior. Rescaling space and time according to the parabolic scaling, we show that solutions converge exponentially to a similarity profile when the scaled time goes to infinity. In the original variables, these profiles correspond to asymptotically self-similar behavior describing the phenomenon of diffusive mixing of the different states at infinity.Our method provides global exponential convergence for all initial states with finite relative entropy. For the case with equal stoichiometric coefficients, we can allow for self-similar profiles with arbitrary equilibrated states,while in the other case we need to assume that the two states atinfinity are sufficiently close such that the self-similar profile is relative flat
Self-similar pattern in coupled parabolic systems as non-equilibrium steady states
We consider reaction-diffusion systems and other related dissipative systems on unbounded domains which would have a Liapunov function (and gradient structure) when posed on a finite domain. In this situation, the system may reach local equilibrium on a rather fast time scale but the infinite amount of mass or energy leads to persistent mass or energy flow for all times. In suitably rescaled variables the system converges to a steady state that corresponds to asymptotically self-similar behavior in the original system
Convergence to self-similar profiles in reaction-diffusion systems
We study a reaction-diffusion system on the real line, where the reactions of
the species are given by one reversible reaction according to the mass-action
law. We describe different positive limits at both sides of infinity and
investigate the long-time behavior. Rescaling space and time according to the
parabolic scaling, we show that solutions converge exponentially to a constant
profile. In the original variables these profiles correspond to asymptotically
self-similar behavior describing the diffusive mixing or equilibration of the
different states at infinity. Our method provides global exponential
convergence for all initial states with finite relative entropy
- …