140 research outputs found

    Moderne Strahlentherapie des Mammakarzinoms

    Get PDF

    Role of Radiosurgery/Stereotactic Radiotherapy in Oligometastatic Disease: Brain Oligometastases

    Get PDF
    During the natural history of oncologic diseases, approximately 20-40% of patients affected by cancer will develop brain metastases. Non-small lung cancer;breast cancer, and melanoma are the primaries that are most likely to metastasize into the brain. To date, the role of Radiosurgery/Stereotactic Radiotherapy (SRS/SRT) without Whole brain irradiation (WBRT) is a well-recognized treatment option for patients with limited intracranial disease (1-4 BMs) and a life-expectancy of more than 3-6 months. In the current review, we focused on randomized studies that evaluate the potential benefit of radiosurgery/stereotactic radiotherapy for brain oligometastases. To date, no difference in overall survival has been observed between SRS/SRT alone compared to WBRT plus SRS. Notably, SRS alone achieved higher local control rates compared to WBRT. A possible strength of SRS adoption is the potential decreased neurocognitive impairment

    MR-guided radiotherapy for liver malignancies

    Get PDF
    MR guided radiotherapy represents one of the most promising recent technological innovations in the field. The possibility to better visualize therapy volumes, coupled with the innovative online adaptive radiotherapy and motion management approaches, paves the way to more efficient treatment delivery and may be translated in better clinical outcomes both in terms of response and reduced toxicity. The aim of this review is to present the existing evidence about MRgRT applications for liver malignancies, discussing the potential clinical advantages and the current pitfalls of this new technology

    Simultaneous object detection and segmentation for patient‐specific markerless lung tumor tracking in simulated radiographs with deep learning

    Get PDF
    Background Real-time tumor tracking is one motion management method to address motion-induced uncertainty. To date, fiducial markers are often required to reliably track lung tumors with X-ray imaging, which carries risks of complications and leads to prolonged treatment time. A markerless tracking approach is thus desirable. Deep learning-based approaches have shown promise for markerless tracking, but systematic evaluation and procedures to investigate applicability in individual cases are missing. Moreover, few efforts have been made to provide bounding box prediction and mask segmentation simultaneously, which could allow either rigid or deformable multi-leaf collimator tracking. Purpose The purpose of this study was to implement a deep learning-based markerless lung tumor tracking model exploiting patient-specific training which outputs both a bounding box and a mask segmentation simultaneously. We also aimed to compare the two kinds of predictions and to implement a specific procedure to understand the feasibility of markerless tracking on individual cases. Methods We first trained a Retina U-Net baseline model on digitally reconstructed radiographs (DRRs) generated from a public dataset containing 875 CT scans and corresponding lung nodule annotations. Afterwards, we used an independent cohort of 97 lung patients to develop a patient-specific refinement procedure. In order to determine the optimal hyperparameters for automatic patient-specific training, we selected 13 patients for validation where the baseline model predicted a bounding box on planning CT (PCT)-DRR with intersection over union (IoU) with the ground-truth higher than 0.7. The final test set contained the remaining 84 patients with varying PCT-DRR IoU. For each testing patient, the baseline model was refined on the PCT-DRR to generate a patient-specific model, which was then tested on a separate 10-phase 4DCT-DRR to mimic the intrafraction motion during treatment. A template matching algorithm served as benchmark model. The testing results were evaluated by four metrics: the center of mass (COM) error and the Dice similarity coefficient (DSC) for segmentation masks, and the center of box (COB) error and the DSC for bounding box detections. Performance was compared to the benchmark model including statistical testing for significance. Results A PCT-DRR IoU value of 0.2 was shown to be the threshold dividing inconsistent (68%) and consistent (100%) success (defined as mean bounding box DSC > 0.6) of PS models on 4DCT-DRRs. Thirty-seven out of the eighty-four testing cases had a PCT-DRR IoU above 0.2. For these 37 cases, the mean COM error was 2.6 mm, the mean segmentation DSC was 0.78, the mean COB error was 2.7 mm, and the mean box DSC was 0.83. Including the validation cases, the model was applicable to 50 out of 97 patients when using the PCT-DRR IoU threshold of 0.2. The inference time per frame was 170 ms. The model outperformed the benchmark model on all metrics, and the comparison was significant (p 0.2 cases, but not over the undifferentiated 84 testing cases. Conclusions The implemented patient-specific refinement approach based on a pre-trained baseline model was shown to be applicable to markerless tumor tracking in simulated radiographs for lung cases

    Fluence-modulated proton CT optimized with patient-specific dose and variance objectives for proton dose calculation

    Get PDF
    Particle therapy treatment planning requires accurate volumetric maps of the relative stopping power, which can directly be acquired using proton computed tomography (pCT). With fluence-modulated pCT (FMpCT) imaging fluence is concentrated in a region-of-interest (ROI), which can be the vicinity of the treatment beam path, and imaging dose is reduced elsewhere. In this work we present a novel optimization algorithm for FMpCT which, for the first time, calculates modulated imaging fluences for joint imaging dose and image variance objectives. Thereby, image quality is maintained in the ROI to ensure accurate calculations of the treatment dose, and imaging dose is minimized outside the ROI with stronger minimization penalties given to imaging organs-at-risk. The optimization requires an initial scan at uniform fluence or a previous x-ray CT scan. We simulated and optimized FMpCT images for three pediatric patients with tumors in the head region. We verified that the target image variance inside the ROI was achieved and demonstrated imaging dose reductions outside of the ROI of 74% on average, reducing the imaging dose from 1.2 to 0.3 mGy. Such dose savings are expected to be relevant compared to the therapeutic dose outside of the treatment field. Treatment doses were re-calculated on the FMpCT images and compared to treatment doses re-recalculated on uniform fluence pCT scans using a 1% criterion. Passing rates were above 98.3% for all patients. Passing rates comparing FMpCT treatment doses to the ground truth treatment dose were above 88.5% for all patients. Evaluation of the proton range with a 1 mm criterion resulted in passing rates above 97.5% (FMpCT/pCT) and 95.3% (FMpCT/ground truth). Jointly optimized fluence-modulated pCT images can be used for proton dose calculation maintaining the full dosimetric accuracy of pCT but reducing the required imaging dose considerably by three quarters. This may allow for daily imaging during particle therapy ensuring a safe and accurate delivery of the therapeutic dose and avoiding excess dose from imaging

    Anak Krakatau triggers volcanic freezer in the upper troposphere

    Get PDF
    Volcanic activity occurring in tropical moist atmospheres can promote deep convection and trigger volcanic thunderstorms. These phenomena, however, are rarely observed to last continuously for more than a day and so insights into the dynamics, microphysics and electrification processes are limited. Here we present a multidisciplinary study on an extreme case, where volcanically-triggered deep convection lasted for six days. We show that this unprecedented event was caused and sustained by phreatomagmatic activity at Anak Krakatau volcano, Indonesia during 22-28 December 2018. Our modelling suggests an ice mass flow rate of similar to 5x10(6)kg/s for the initial explosive eruption associated with a flank collapse. Following the flank collapse, a deep convective cloud column formed over the volcano and acted as a 'volcanic freezer' containing similar to 3x10(9)kg of ice on average with maxima reaching similar to 10(10)kg. Our satellite analyses reveal that the convective anvil cloud, reaching 16-18km above sea level, was ice-rich and ash-poor. Cloud-top temperatures hovered around -80 degrees C and ice particles produced in the anvil were notably small (effective radii similar to 20 mu m). Our analyses indicate that vigorous updrafts (>50m/s) and prodigious ice production explain the impressive number of lightning flashes (similar to 100,000) recorded near the volcano from 22 to 28 December 2018. Our results, together with the unique dataset we have compiled, show that lightning flash rates were strongly correlated (R=0.77) with satellite-derived plume heights for this event

    Gal-2 increases H3K4me3 and H3K9ac in trophoblasts and preeclampsia

    Get PDF
    Preeclampsia (PE) is a severe pregnancy disorder with a pathophysiology not yet completely understood and without curative therapy. The histone modifications H3K4me(3) and H3K9ac, as well as galectin-2 (Gal-2), are known to be decreased in PE. To gain a better understanding of the development of PE, the influence of Gal-2 on histone modification in trophoblasts and in syncytialisation was investigated. Immunohistochemical stains of 13 PE and 13 control placentas were correlated, followed by cell culture experiments. An analysis of H3K4me(3) and H3K9ac was conducted, as well as cell fusion staining with E-cadherin and β-catenin—both after incubation with Gal-2. The expression of H3K4me(3) and H3K9ac correlated significantly with the expression of Gal-2. Furthermore, we detected an increase in H3K4me(3) and H3K9ac after the addition of Gal-2 to BeWo/HVT cells. Moreover, there was increased fusion of HVT cells after incubation with Gal-2. Gal-2 is associated with the histone modifications H3K4me(3) and H3K9ac in trophoblasts. Furthermore, syncytialisation increased after incubation with Gal-2. Therefore, we postulate that Gal-2 stimulates syncytialisation, possibly mediated by H3K4me(3) and H3K9ac. Since Gal-2, as well as H3K4me(3) and H3K9ac, are decreased in PE, the induction of Gal-2 might be a promising therapeutic target

    Survey on brachytherapy training among radiation oncology residents in the German-speaking regions of Europe.

    Get PDF
    PURPOSE This survey aimed to determine the perception of brachytherapy training among residents in the DACH region, consisting of Austria, Germany and Switzerland. MATERIAL & METHODS An online questionnaire containing 22 questions related to trainee demographics (n = 5) and to brachytherapy training (n = 17) was sent in two iterations in 11/2019 and 02/2020. The following topics were evaluated: institutional support, barriers to training, extent of training, site-specific training (prostate, gynaecology, breast, gastrointestinal and skin), preferences for further training and outlook on overall development of brachytherapy. The responses were mostly based on a Likert scale of 1 to 5, thereby reflecting strength of opinion. Descriptive statistics were used to describe frequencies. RESULTS Among the 108 respondents, approximately 69% of residents considered the ability to perform brachytherapy independently to be important or somewhat important. However, only 31% of respondents reported to have a dedicated brachytherapy training during residency. The major limitation to achieve independence in performing brachytherapy was seen in a low case load in Austria, in the lack of training in Switzerland and in both of them in Germany. CONCLUSION The interest in brachytherapy training among residents in German-speaking countries was generally high, but there is a perceived lack of sufficient case volumes and partially also in formal training opportunities. Fellowships at departments with a high case load as part of a formalised curriculum and dedicated hands-on workshops at national or international conferences might help to overcome these issues

    Multifocal high-grade glioma radiotherapy safety and efficacy

    Get PDF
    BACKGROUND Multifocal manifestation of high-grade glioma is a rare disease with very unfavourable prognosis. The pathogenesis of multifocal glioma and pathophysiological differences to unifocal glioma are not fully understood. The optimal treatment of patients suffering from multifocal high-grade glioma is not defined in the current guidelines, therefore individual case series may be helpful as guidance for clinical decision-making. METHODS Patients with multifocal high-grade glioma treated with conventionally fractionated radiation therapy (RT) in our institution with or without concomitant chemotherapy between April 2011 and April 2019 were retrospectively analysed. Multifocality was neuroradiologically assessed and defined as at least two independent contrast-enhancing foci in the MRI T1 contrast-enhanced sequence. IDH mutational status and MGMT methylation status were assessed from histopathology records. GTV, PTV as well as the V30Gy, V45Gy and D2% volumes of the brain were analysed. Overall and progression-free survival were calculated from the diagnosis until death and from start of radiation therapy until diagnosis of progression of disease in MRI for all patients. RESULTS 20 multifocal glioma cases (18 IDH wild-type glioblastoma cases, one diffuse astrocytic glioma, IDH wild-type case with molecular features of glioblastoma and one anaplastic astrocytoma, IDH wild-type case) were included into the analysis. Resection was performed in two cases and stereotactic biopsy only in 18 cases before the start of radiation therapy. At the start of radiation therapy patients were 61~years old in median (range 42-84~years). Histopathological examination showed IDH wild-type in all cases and MGMT promotor methylation in 11 cases (55%). Prescription schedules were 60~Gy (2~Gy × 30), 59.4~Gy (1.8~Gy × 33), 55~Gy (2.2~Gy × 25) and 50~Gy (2.5~Gy × 20) in 15, three, one and one cases, respectively. Concomitant temozolomide chemotherapy was applied in 16 cases, combined temozolomide/lomustine chemotherapy was applied in one case and concomitant bevacizumab therapy in one case. Median number of GTVs was three. Median volume of the sum of the GTVs was 26 cm3. Median volume of the PTV was 425.7 cm3 and median PTV to brain ratio 32.8 percent. Median D2% of the brain was 61.5~Gy (range 51.2-62.7) and median V30Gy and V45 of the brain were 59.9 percent (range 33-79.7) and 40.7 percent (range 14.9-64.1), respectively. Median survival was eight months (95% KI 3.6-12.4~months) and median progression free survival after initiation of RT five months (95% CI 2.8-7.2~months). Grade 2 toxicities were detected in eight cases and grade 3 toxicities in four cases consisting of increasing edema in three cases and one new-onset seizure. One grade 4 toxicity was detected, which was febrile neutropenia related to concomitant chemotherapy. CONCLUSION Conventionally fractionated RT with concomitant chemotherapy could safely be applied in multifocal high-grade glioma in this case series despite large irradiation treatment fields

    ExacTrac Dynamic workflow evaluation: Combined surface optical/thermal imaging and X‐ray positioning

    Get PDF
    In modern radiotherapy (RT), especially for stereotactic radiotherapy or stereotactic radiosurgery treatments, image guidance is essential. Recently, the ExacTrac Dynamic (EXTD) system, a new combined surface-guided RT and image-guided RT (IGRT) system for patient positioning, monitoring, and tumor targeting, was introduced in clinical practice. The purpose of this study was to provide more information about the geometric accuracy of EXTD and its workflow in a clinical environment. The surface optical/thermal- and the stereoscopic X-ray imaging positioning systems of EXTD was evaluated and compared to cone-beam computed tomography (CBCT). Additionally, the congruence with the radiation isocenter was tested. A Winston Lutz test was executed several times over 1 year, and repeated end-to-end positioning tests were performed. The magnitude of the displacements between all systems, CBCT, stereoscopic X-ray, optical-surface imaging, and MV portal imaging was within the submillimeter range, suggesting that the image guidance provided by EXTD is accurate at any couch angle. Additionally, results from the evaluation of 14 patients with intracranial tumors treated with open-face masks are reported, and limited differences with a maximum of 0.02 mm between optical/thermal- and stereoscopic X-ray imaging were found. As the optical/thermal positioning system showed a comparable accuracy to other IGRT systems, and due to its constant monitoring capability, it can be an efficient tool for detecting intra-fractional motion and for real-time tracking of the surface position during RT
    corecore