6 research outputs found
Evaluation of Children Caries Risk Factors: A Narrative Review of Nutritional Aspects, Oral Hygiene Habits, and Bacterial Alterations
Dental caries is one of the most common diseases—both in adults and children—that occurs due to the demineralization of enamel and dentine by the organic acids formed from bacteria present in dental plaques through anaerobic metabolism of dietary sugars. The aim of this article is to provide a guideline to assess the risk of caries by looking for the main factors involved. Literature research was performed for studies that analyzed the factors most involved in the development of child caries, such as poor oral hygiene, bad eating habits (or food disorders), and an alteration of the oral bacterial flora—with an increase of Streptococci spp., Lactobacilli spp., Candida albicans, Cryptococcus neoformans, and Candida sake. It is therefore essential to assess the risk of caries in children, based on the assessment of risk factors, in order to be able to establish preventive and/or therapeutic approaches that will reduce or stop the development of dental caries. The use of fluoride products, products made from casein phosphopeptide-amorphous calcium phosphate, substituted zinc biomimetic hydroxyapatite products, or products containing self-assembling oligopeptide SAP-P11-4 are useful. In terms of the clinical approach, a communicative approach should be added to learn about the eating habits and the oral hygiene habits of the child and parents; in addition, the use of a simple method to frame the factors involved, and subsequently establish the risk of carious lesions in the child, allows the reduction of the DMFT (Decayed Missing Filled Teeth) or ICDAS (International Caries Detection and Assessment System) index on large scales
Assessment of Oral Microbiome Changes in Healthy and COVID-19-Affected Pregnant Women: A Narrative Review
During pregnancy, there are several metabolic changes and an alteration in the composition of microorganisms that inhabit the oral cavity, with an increase in pathogenic bacteria that promote the onset of gingival diseases. This review is based on research in reference to the PICO model (Problem/Intervention/Comparison/Outcome), related to changes in the oral microbiome of pregnant women and possible oral consequences in patients with COVID-19. The results showed a growth of some pathogenic bacteria in pregnant women, including Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum, and the selective growth of the Prevotella intermedia, Porphyromonas gingivalis and Tannerella species, probably due to the fact that these bacteria use progesterone as a source of nutrition. These same bacteria are implicated in the development of periodontal disease. Periodontal pockets have bidirectional interactions between the oral cavity and the systemic circulatory system through the peripheral gingival blood vessels. The affinity of the SARS-CoV-2 virus to specific membrane receptors is now clear, and could involve the internal and external epithelial lining or the fibroblasts of the periodontal ligament. According to the results of the present review, the control of oral microbiome changes during pregnancy would be welcomed. The use of probiotics could help clinicians manage pregnant patients, reducing inflammatory indexes. Future studies should focus not only on changes in the level of the oral microbiome in pregnancy or the correlation between periodontal disease and COVID-19, but also on oral changes induced by both clinical situations
Assessment of Oral Microbiome Changes in Healthy and COVID-19-Affected Pregnant Women: A Narrative Review
During pregnancy, there are several metabolic changes and an alteration in the composition of microorganisms that inhabit the oral cavity, with an increase in pathogenic bacteria that promote the onset of gingival diseases. This review is based on research in reference to the PICO model (Problem/Intervention/Comparison/Outcome), related to changes in the oral microbiome of pregnant women and possible oral consequences in patients with COVID-19. The results showed a growth of some pathogenic bacteria in pregnant women, including Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum, and the selective growth of the Prevotella intermedia, Porphyromonas gingivalis and Tannerella species, probably due to the fact that these bacteria use progesterone as a source of nutrition. These same bacteria are implicated in the development of periodontal disease. Periodontal pockets have bidirectional interactions between the oral cavity and the systemic circulatory system through the peripheral gingival blood vessels. The affinity of the SARS-CoV-2 virus to specific membrane receptors is now clear, and could involve the internal and external epithelial lining or the fibroblasts of the periodontal ligament. According to the results of the present review, the control of oral microbiome changes during pregnancy would be welcomed. The use of probiotics could help clinicians manage pregnant patients, reducing inflammatory indexes. Future studies should focus not only on changes in the level of the oral microbiome in pregnancy or the correlation between periodontal disease and COVID-19, but also on oral changes induced by both clinical situations
Assessment of Genetical, Pre, Peri and Post Natal Risk Factors of Deciduous Molar Hypomineralization (DMH), Hypomineralized Second Primary Molar (HSPM) and Molar Incisor Hypomineralization (MIH): A Narrative Review
Objectives: Analyze defects in the state of maturation of the enamel result in an adequate volume of enamel, but in an insufficient mineralization, which can affect both deciduous teeth and permanent teeth. Among the most common defects, we recognize Deciduous Molar Hypominerlization (DMH), Hypomineralized Second Primary Molar (HSPM), and Molar Incisor Hypomineralization (MIH). These, in fact, affect the first deciduous molars, the second deciduous molars and molars, and permanent incisors, respectively, but their etiology remains unclear. The objective of the paper is to review studies that focus on investigating possible associations between genetic factors or prenatal, perinatal, and postnatal causes and these enamel defects. Materials and methods: A comprehensive and bibliometric search for publications until January 2021 was conducted. The research question was formulated following the Population, Intervention, Comparison, Outcome strategy. Case-control, cross-sectional, cohort studies, and clinical trials investigating genetic and environmental etiological factors of enamel defects were included. Results: Twenty-five articles are included. For genetic factors, there is a statistical relevance for SNPs expressed in the secretion or maturation stage of amelogenesis (16% of studies and 80% of studies that investigated these factors). For prenatal, perinatal, and postnatal causes, there is a statistical relevance for postnatal factors, such as the breastfeeding period (2%), asthma (16%), high fever episodes (20%), infections/illnesses (20%), chickenpox (12%), antibiotic intake (8%), diarrhea (4%), and pneumonia (4%). Conclusions: The results are in agreement with the multifactorial idea of the dental enamel defects etiology, but to prove this, further studies enrolling larger, well-diagnosed, and different ethnic populations are necessary to expand the investigation of the genetic and environmental factors that might influence the occurrence of DMH, HPSM, and MIH
Oral Administration of Oleuropein and Its Semisynthetic Peracetylated Derivative Prevents Hepatic Steatosis, Hyperinsulinemia, and Weight Gain in Mice Fed with High Fat Cafeteria Diet
The high consumption of olive tree products in the Mediterranean diet has been associated with a lower incidence of metabolic disorders and cardiovascular diseases. In particular, the protective effects of olive oil have been attributed to the presence of polyphenols such as oleuropein (Ole) and its derivatives. We have synthesized a peracetylated derivative of Ole (Ac-Ole) which has shown in vitro antioxidant and growth-inhibitory activity higher than the natural molecule. In this study, male C57BL/6JOlaHsd mice were fed with a standard (std), cafeteria (caf) diet, and caf diet supplemented with Ole (0.037 mmol/kg/day) and Ac-Ole (0.025 mmol/kg/day) for 15 weeks. We observed a significant reduction in the caf diet-induced body weight gain and increase of abdominal adipose tissue. Also, Ole and Ac-Ole prevented the development of hepatic steatosis. Finally, Ole and Ac-Ole determined a lower increase of HDL and LDL-cholesterol levels and corrected caf diet-induced elevation of plasma glucose concentrations by improving insulin sensitivity. The observed beneficial properties of Ole and Ac-Ole make these compounds and in particular Ac-Ole promising candidates for a potential pharmaceutic use in metabolic disorders
Effects of Oleacein on High-Fat Diet-Dependent Steatosis, Weight Gain, and Insulin Resistance in Mice
Many reports indicate that the protective action of nutraceuticals in the Mediterranean diet, against metabolic and cardiovascular diseases, can be attributed to the action of polyphenolic components of extra-virgin olive oil (EVOO). Here, we evaluated the protective effects of oleacein, one of the most abundant secoiridoids in EVOO, on the damages/metabolic alterations caused by high-fat diet (HFD) in male C57BL/6JolaHsd mice. After 5 weeks of treatment with 20 mg/kg of oleacein, body weight, glycemia, insulinemia, serum lipids, and histologic examination of liver tissue indicated a protective action of oleacein against abdominal fat accumulation, weight gain, and liver steatosis, with improvement of insulin-dependent glucose and lipid metabolism. Both serum parameters and hepatic histologic examination were altered in mice fed with HFD. By contrast, in the animals that received oleacein, plasma glucose, cholesterol and triglyceride serum levels, and liver histology were similar to controls fed with normocaloric diet. In addition, protein levels of FAS, SREBP-1, and phospho-ERK in liver were positively modulated by oleacein, indicating an improvement in liver insulin sensitivity. In a group of obese mice, treatment with oleacein determined a light, but still significant reduction of the increase in body weight, mainly due to lesser liver steatosis enlargement, associated with reduced levels of SREBP-1 and phospho-ERK and lower levels of total serum cholesterol; in these animals, altered plasma glucose and triglyceride serum levels were not reverted by oleacein. These results indicate that HFD-related hepatic insulin resistance may be partially prevented by oral administration of oleacein, suggesting a protective role of this nutraceutical against diet-dependent metabolic alterations. Additional studies are necessary to check whether oleacein can be used as an adjuvant to improve insulin sensitivity in humans