60 research outputs found

    A Series of COX-2 Inhibitors Endowed with NO-Releasing Properties: Synthesis, Biological Evaluation, and Docking Analysis

    Get PDF
    Herein we report the synthesis, biological evaluation, and docking analysis of a class of cyclooxygenase-2 (COX-2) inhibitors with nitric oxide (NO)-releasing properties. In an earlier study, a number of selective COX-2 inhibitors/NO donors were developed by conjugating a diarylpyrrole scaffold endowed with selective COX-2 inhibitory properties with various nitrooxyalkyl side chains such as esters, -amino esters, amides, -amino amides, ethers, -amino ethers, inverse esters, and amides. These candidates were found to have high invitro potencies (COX-2 inhibition at 10m: 96%), great efficacy in determining NO-vasorelaxing responses, and good antinociceptive activity in an abdominal writhing test. Among the compounds synthesized in the present work, derivative 2b [2-(2-(1-(3-fluorophenyl)-2-methyl-5-(4-sulfamoylphenyl)-1H-pyrrol-3-yl)acetamido)ethyl nitrate] showed particularly outstanding activity, with efficacy similar to that of celecoxib even at very low concentrations

    Synthesis, biological evaluation and docking analysis of a new series of methylsulfonyl and sulfamoyl acetamides and ethyl acetates as potent COX-2 inhibitors

    Get PDF
    We report herein the synthesis, biological evaluation and docking analysis of a new series of methylsulfonyl, sulfamoyl acetamides and ethyl acetates that selectively inhibit cyclooxygenase-2 (COX-2) isoform. Among the newly synthesized compounds, some of them were endowed with a good activity against COX-2 and a good selectivity COX-2/COX-1 in vitro as well as a desirable analgesic activity in vivo, proving that replacement of the ester moiety with an amide group gave access to more stable derivatives, characterized by a good COX-inhibition

    Stimulated Expression of CXCL12 in Adrenocortical Carcinoma by the PPARgamma Ligand Rosiglitazone Impairs Cancer Progression

    Full text link
    Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis when metastatic and scarce treatment options in the advanced stages. In solid tumors, the chemokine CXCL12/CXCR4 axis is involved in the metastatic process. We demonstrated that the human adrenocortex expressed CXCL12 and its cognate receptors CXCR4 and CXCR7, not only in physiological conditions, but also in ACC, where the receptors' expression was higher and the CXCL12 expression was lower than in the physiological conditions. In a small pilot cohort of 22 ACC patients, CXCL12 negatively correlated with tumor size, stage, Weiss score, necrosis, and mitotic activity. In a Kaplan-Meier analysis, the CXCL12 tumor expression significantly predicted disease-free, progression-free, and overall survival. In vitro treatment of the primary ACC H295R and of the metastatic MUC-1 cell line with the PPARγ-ligand rosiglitazone (RGZ) dose-dependently reduced proliferation, resulting in a significant increase in CXCL12 and a decrease in its receptors in the H295R cells only, with no effect on the MUC-1 levels. In ACC mouse xenografts, tumor growth was inhibited by the RGZ treatment before tumor development (prevention-setting) and once the tumor had grown (therapeutic-setting), similarly to mitotane (MTT). This inhibition was associated with a significant suppression of the tumor CXCR4/CXCR7 and the stimulation of human CXCL12 expression. Tumor growth correlated inversely with CXCL12 and positively with CXCR4 expression, suggesting that local CXCL12 may impair the primary tumor cell response to the ligand gradient that may contribute to driving the tumor progression. These findings indicate that CXCL12/CXCR4 may constitute a potential target for anti-cancer agents such as rosiglitazone in the treatment of ACC

    Gc-protein derived macrophage activating factor (GcMAF) counteracts the neuronal damage induced by oxaliplatin

    Get PDF
    Oxaliplatin-based regimens are effective in metastasised advanced cancers. However, a major limitation to their use is represented by neurotoxicity leading to peripheral neurophaty (Wolf et al., 2008). In this study we evaluate the effects of an immunotherapeutic agent (Gc protein-derived macrophage activating factor, GcMAF) in preventing oxaliplatin-induced neuronal damage and in restoring microglial activation. The effects of oxaliplatin was studied in human neurons (SH-SY5Y) and microglial cells (c13-nj). Cell density, morphology and viability as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration and markers of microglia activation were determined. GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability; it also increased cAMP production, VEGF and neuromodulin expression. GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it induced microglial activation resulting in an increased expression of a specific marker without any increase in cell number. Our results demonstrate that GcMAF may significantly contribute to neutralize the neurotoxicity induced by oxaliplatin, at the same time concurring to an integrated anti-cancer effect

    Human and murine microglial cell lines: two experimental models to deeply understand the mechanism of microglia involvement in human brain diseases

    Get PDF
    Microglia act as a first line of defence against pathogen invasion, by recognizing, sequestering and processing antigens. Once microglia become activated, they produce and release many substances that activate nearby astrocytes, microglia and neurons (Martin et al., 2005). In this study we compare two microglial cell lines: the human cell line c13-nj and the murine microglia cell line BV-2. BV-2 are commonly available on the market but their main limitation consists in the fact that they are not human thus limiting their use for the study of human brain diseases. On the contrary, the human c13-nj cell line, which would be the most appropriate to investigate the role of microglia in human brain diseases, is not commercially available. In this study we compare the cell viability, the cAMP formation, the VEGF expression as well as the expression of a specific marker of microglial activation (B7-2) after treatment with a toxicant (oxaliplatin) and with a protective agent (GcMAF) on BV-2 and on c13-nj (kindly donated). Our results show that the human microglial cell line is more resistant to toxicants such as oxaliplatin; however, the signal transduction pathways activated when the two cell lines are treated both with oxaliplatin and with GcMAF, are the same. This lead us to hypothesize that the murine microglial cell line (BV- 2) can be considered as a superimposable model in studies concerning human brain representing an excellent experimental model, not expensive, easy to culture and to retrieve

    Semi-quantitative risk assessment of African swine fever virus introduction in pig farms

    Get PDF
    A semi-quantitative risk assessment was developed to classify pig farms in terms of the probability of introduction of African swine fever virus (ASFV). Following on-farm data collection via a specific checklist, we applied a modified failure mode and effect analysis (FMEA) to calculate the risk priority codes (RPC's), indicating increasing risk levels ranging from 1 to 5. The importance of biosecurity measures was attributed by experts. To consider geographic risk factors, we classified pig farms based on local density of farmed pigs, and on the estimated wild boar population density. The combination of RPC's with geographical risk factors resulted into a final ranking of pig farms in terms of the risk of ASFV introduction. Furthermore, the estimation of frequency and levels of non-compliance with biosecurity measures was used to identify weak points in risk prevention at farm level. The outcome of the risk assessment was affected by choices in assigning non-compliance scores and importance to specific components of biosecurity. The method was applied in 60 commercial farms in major pig production areas in Italy. Furthermore, we applied a reduced version of our checklist in 12 non-commercial/small commercial (≤20 pigs) farms in the northern Apennines. In commercial farms, highest RPC's were obtained for biosecurity measures associated with personnel practices and farm buildings/planimetry. Intervention should be addressed to training of personnel on biosecurity and ASF, to avoid contacts with other pig herds, and to improve practices in the entrance into the farm. Sharing trucks with other farms, and loading/unloading of pigs were other weak points. Fencing was classified as insufficient in 70% of the commercial farms. Among these farms, breeding units were characterised by the lowest risk of ASFV introduction (although differences among median ranks were not statistically significant: P-value = 0.07; Kruskal–Wallis test), and increasing herd size was not significantly correlated with a higher risk (Kendall's τ = −0.13; P-value = 0.14). Density of farmed pig was greatest in the main pig production area in northern Italy. Conversely, exposure to wild boars was greatest for non-commercial/small commercial farms on the Apennines, which were also characterised by non-compliance with critical biosecurity measures

    EFFECTS OF GC-MACROPHAGE ACTIVATING FACTOR IN HUMAN NEURONS; IMPLICATIONS FOR TREATMENT OF CHRONIC FATIGUE SYNDROME

    Get PDF
    ABSTRACT Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease of multifactorial aetiology characterized by immune system dysfunction, widespread inflammation, multisystemic neuropathology and persistent pain. Given the central role of the immune system in the pathogenesis of the syndrome, we studied the effects of a potent modulator of the immune system in in vitro and in vivo models that could help clarifying its role and indications in ME/CFS treatment. To this end, we studied the effects of vitamin D-binding protein-derived macrophage activating factor (also designated as GcMacrophage Activating Factor or (GcMAF)) on human neuronal cells (SH-SY5Y) and on the persistent pain induced by osteoarticular damage in rats. GcMAF at pM concentration increased neuronal cell viability and metabolism through increased mitochondrial enzyme activity. These effects were accompanied by cAMP formation and by morphological changes that were representative of neuronal differentiation. We hypothesize that these effects are to be ascribed to the interconnection between the GcMAF and Vitamin D Receptor (VDR) signalling pathways. The results presented here confirm at the experimental level the therapeutic effects of GcMAF in ME/CFS and elucidate the mechanisms of action through which GcMAF might be responsible for such therapeutic effects

    EFFECTS OF GC-MACROPHAGE ACTIVATING FACTOR IN HUMAN NEURONS; IMPLICATIONS FOR TREATMENT OF CHRONIC FATIGUE SYNDROME

    Get PDF
    ABSTRACT Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease of multifactorial aetiology characterized by immune system dysfunction, widespread inflammation, multisystemic neuropathology and persistent pain. Given the central role of the immune system in the pathogenesis of the syndrome, we studied the effects of a potent modulator of the immune system in in vitro and in vivo models that could help clarifying its role and indications in ME/CFS treatment. To this end, we studied the effects of vitamin D-binding protein-derived macrophage activating factor (also designated as GcMacrophage Activating Factor or (GcMAF)) on human neuronal cells (SH-SY5Y) and on the persistent pain induced by osteoarticular damage in rats. GcMAF at pM concentration increased neuronal cell viability and metabolism through increased mitochondrial enzyme activity. These effects were accompanied by cAMP formation and by morphological changes that were representative of neuronal differentiation. We hypothesize that these effects are to be ascribed to the interconnection between the GcMAF and Vitamin D Receptor (VDR) signalling pathways. The results presented here confirm at the experimental level the therapeutic effects of GcMAF in ME/CFS and elucidate the mechanisms of action through which GcMAF might be responsible for such therapeutic effects
    • …
    corecore