7 research outputs found

    Left-handed properties dependence versus the interwire distance in Fe-based microwires metastructures

    No full text
    Experimental and theoretical investigations on the left-handed properties dependence versus the interwire distance of three new proposed Fe77.5Si7.5B15 glass coated microwires-based metastructures are presented. The left-handed characteristics of the metastructures were determined in the frequency range 8.2 Ă· 12 GHz and external d.c. magnetic fields ranging from 0 to 32 kA/m. The experimental results show that the electromagnetic losses of the metastructures increase with the decreasing of the interwire distance due to the increasing of the long-range dynamic dipole-dipole interaction within inter-wires in the presence of the microwave field. The numerical calculations using Nicolson–Weiss–Ross algorithm are in agreement with the experimental results. The variation of the interwire distance proves to be a useful tool to obtain metastructures with controlled left-handed characteristics

    Degradation of Carbamazepine from Aqueous Solutions via TiO<sub>2</sub>-Assisted Photo Catalyze

    No full text
    Photocatalytic degradation of carbamazepine (CBZ) from spiked aqueous solutions, via a UV/TiO2 system, was investigated, and the optimum photocatalyst type (P25 Degussa) and dose (500 mg/L), as well as irradiation time (45 min), were established. The degradation process kinetics was studied, and a degradation rate constant of 3.14 × 10−5 M min−1 was calculated for CBZ, using the Langmuir–Hinshelwood equation. Experiments performed in the presence of scavengers showed that the main reactive species involved in the degradation process are holes and free hydroxyl radicals; superoxide radicals also play a role in CBZ degradation. Eight transformation products of CBZ were identified, and a possible degradation pathway, consisting of four routes, was proposed. Toxicity and genotoxicity tests were also performed for both untreated and treated CBZ solutions, proving that the use of a UV/TiO2 system represents a suitable treatment approach for aqueous systems with CBZ content

    Development of 3D ZnO-CNT Support Structures Impregnated with Inorganic Salts

    No full text
    Carbon-based materials are promising candidates for enhancing thermal properties of phase change materials (PCMs) without lowering its energy storage capacity. Nowadays, researchers are trying to find a proper porous structure as PCMs support for thermal energy storage applications. In this context, the main novelty of this paper consists in using a ZnO-CNT-based nanocomposite powder, prepared by an own hydrothermal method at high pressure, to obtain porous 3D printed support structures with embedding capacity of PCMs. The morphology of 3D structures, before and after impregnation with three PCMs inorganic salts (NaNO3, KNO3 and NaNO3:KNO3 mixture (1:1 vol% saturated solution) was investigated by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). For structure impregnated with nitrates mixture, SEM cross-section morphology suggest that the inorganic salts impregnation started into micropores, continuing with the covering of the 3D structure surface and epitaxial growing of micro/nanostructured crystals, which led to reducing the distance between the structural strands. The variation of melting/crystallization points and associated enthalpies of impregnated PCMs and their stability during five repeated thermal cycles were studied by differential scanning calorimetry (DSC) and simultaneous DSC-thermogravimetry (DSC-TGA). From the second heating-cooling cycle, the 3D structures impregnated with NaNO3 and NaNO3-KNO3 mixture are thermally stable

    Hydrothermal synthesis of nanocrystalline ZrO2-8Y2O3-xLn2O3 powders (Ln = La, Gd, Nd, Sm): crystalline structure, thermal and dielectric properties

    No full text
    Zirconium dioxide (ZrO2) is one of the ceramic materials with high potential in many areas of modern technologies. ZrO2 doped with 8 wt.% (~4.5 mol%) Y2O3 is a commercial powder used for obtaining stabilized zirconia materials (8 wt.% YSZ) with high temperature resistance and good ionic conductivity. During recent years it was reported the co-doping with multiple rare earth elements has a significant influence on the thermal, mechanical and ionic conductivity of zirconia, due complex grain size segregation and enhanced oxygen vacancies mobility. Different methods have been proposed to synthesize these materials. Here, we present the hydrothermal synthesis of 8 wt.% (~4.5 mol%) YSZ co-doped with 4, 6 and 8 wt.% La2O3, Nd2O3, Sm2O3 and Gd2O3 respectively. The crystalline phases formed during their thermal treatment in a large temperature range were analyzed by X-ray diffraction. The evolution of phase composition vs. thermal treatment temperatures shows as a major trend the formation at temperatures >1000 °C of a cubic solid solutions enriched in the rare earth oxide used for co-doping as major phase. The first results on the thermal conductivities and impedance measurements on sintered pellets obtained from powders co-doped with 8 wt.% Y and 6% Ln (Ln = La, Nd, Sm and Gd) and the corresponding activation energies are presented and discussed. The lowest thermal conductivity was obtained for La co-doped 8 wt.% YSZ while the lowest activation energy for ionic conduction for Gd co-doped 8 wt.% YSZ materials

    Eugenol Induces Apoptosis in Tongue Squamous Carcinoma Cells by Mediating the Expression of Bcl-2 Family

    No full text
    Head and neck squamous cell carcinoma is highly aggressive type of cancer for which the available treatment often causes patients severe side effects. Eugenol (Eug) is the major active constituent of clove essential oil and is known to possess antitumor properties. The present study aimed to assess the in vitro cytotoxicity of eugenol in SCC-4, tongue squamous carcinoma cells, and also in HGF, human gingival fibroblasts. Both cell lines were treated with five concentrations of Eug (0.1–1 mM) for 72 h. Cellular viability was assessed, followed by cellular morphological evaluation and by staining of the nuclei and cytoskeleton. RT-PCR was conducted in order to find the effect eugenol had on the expression on Bad, Bax, and Bcl-2 genes. Eugenol induced a dose-dependent decrease in viability in both cell lines, with the SCC-4 cells being significantly more affected. HGF cells detached from the plate at the highest concentrations used, while SCC-4 cells changed their morphology in a dose-dependent manner, with rounding, floating cells, and confluency loss being observed. Apoptotic-like signs such as chromatin and actin filaments condensation were clearly seen in SCC-4 cells, while RT-PCR revealed a significantly increased expression of pro-apoptotic genes Bax and Bad. Therefore, eugenol exerts its cytotoxic effect in tongue squamous cell carcinoma through inducing apoptosis

    Antibacterial Effect of Eco-Friendly Silver Nanoparticles and Traditional Techniques on Aged Heritage Textile, Investigated by Dark-Field Microscopy

    No full text
    An improper indoor microclimate has adverse effects on the state of preservation of historical textiles arranged in them, favoring the development of bacteriological microflora. The current study aims to combine traditional and innovative methods for cleaning and preserving a 100-year-old traditional blouse from Bihor, Romania. The material of the blouse was impregnated with 30 and 70 ppm silver nanosuspensions and washed with a substance obtained from boiling natural wood ash (lye). The research goals were to determine the antimicrobial action of lye washing and silver nanoparticles applied to the analyzed textile material and identify the way in which the environmental factors (light) act upon the conservation degree of textile objects impregnated with silver nanoparticles. All these procedures are eco-friendly and do not cause any damage to the constituent material of the fabrics. The use of the hyperspectral imaging technique proved the permeation of both 30 and 70 ppm silver nanosuspensions into the textile, producing changes in the textile&rsquo;s reflectance spectrum after being treated with them. The results showed anti-bactericidal/fungal properties of both silver nanoparticles and lye. Microbiological analyses revealed that bacterial colonies were reduced to more than 95% in both cases. The antibacterial effect of silver nanoparticles on the textile material of the blouse was maintained throughout the duration of the study, and under normal environmental conditions, the effects would remain active for a long period

    SIAIP position paper: provocation challenge to antibiotics and non-steroidal anti-inflammatory drugs in children

    No full text
    corecore