144 research outputs found
Active Mg Estimation Using Thermal Analysis: A Rapid Method to Control Nodularity in Ductile Cast Iron Production
Appropriate nodularity in ductile iron castings is strongly associated with the presence of high enough not combined Mg dissolved in the melt to cast. However, the residual Mg which is commonly measured for production control accounts for both dissolved Mg and Mg combined as oxides and sulfides. To account for the uncertainties associated with such a control, it is quite usual to over treat the melt with the risk of porosity appearance. A new methodology based on thermal analysis has been developed in the present work so as to estimate the amount of free Mg dissolved in the melt ready for pouring. A combination of Te mixture and a new “reactive mixture” composed of sulfur plus a commercial inoculant has been prepared for this purpose. This reactive mixture is able to transform the magnesium remaining dissolved in the melt to combined forms of this element. Experiments performed both during start of production (when Mg overtreatment is usual) and during normal mass production indicate that important variations of free Mg occur without relevant changes in residual Mg content as determined by spectrometry. The method developed in the present work has shown to be highly effective to detect those melt batches where active Mg content is not high enough for guaranteeing a correct nodularity of castings. Selection of proper active Mg thresholds and a correct inoculation process are critical to avoid “false”-negative results when using this new method
Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid
The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC
Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with Beams of High Intensity and Large Brilliance
We study the production of radioisotopes for nuclear medicine in
photonuclear reactions or ()
photoexcitation reactions with high flux [()/s], small
diameter m and small band width () beams produced by Compton back-scattering of laser
light from relativistic brilliant electron beams. We compare them to (ion,np) reactions with (ion=p,d,) from particle accelerators like
cyclotrons and (n,) or (n,f) reactions from nuclear reactors. For
photonuclear reactions with a narrow beam the energy deposition in the
target can be managed by using a stack of thin target foils or wires, hence
avoiding direct stopping of the Compton and pair electrons (positrons).
isomer production via specially selected cascades
allows to produce high specific activity in multiple excitations, where no
back-pumping of the isomer to the ground state occurs. We discuss in detail
many specific radioisotopes for diagnostics and therapy applications.
Photonuclear reactions with beams allow to produce certain
radioisotopes, e.g. Sc, Ti, Cu, Pd, Sn,
Er, Pt or Ac, with higher specific activity and/or
more economically than with classical methods. This will open the way for
completely new clinical applications of radioisotopes. For example Pt
could be used to verify the patient's response to chemotherapy with platinum
compounds before a complete treatment is performed. Also innovative isotopes
like Sc, Cu and Ac could be produced for the first time
in sufficient quantities for large-scale application in targeted radionuclide
therapy.Comment: submitted to Appl. Phys.
Processing of ultrafine-size particulate metal matrix composites by advanced shear technology
Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR
Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology
Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting
(MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated.
The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR
An electron microscopy study of graphite growth in nodular cast irons
Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron–graphite) and partly in the metastable (iron–cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformatio
Recommended from our members
Thin Wall Iron Castings
Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified
- …