15 research outputs found

    Ecobiophysical Aspects on Nanosilver Biogenerated from Citrus reticulata

    Get PDF
    In recent years, a considerable interest was paid to ecological strategies in management of plant diseases and plant growth. Metallic nanoparticles (MNPs) gained considerable interest as alternative to pesticides due to their interesting properties. Green synthesis of MNPs using plant extracts is very advantageous taking into account the fact that plants are easily available and eco-friendly and possess many phytocompounds that help in bioreduction of metal ions. In this research work, we phytosynthesized AgNPs from aqueous extract of Citrus reticulata peels, with high antioxidant, antibacterial, and antifungal potential. These “green” AgNPs were characterized by modern biophysical methods (absorption and FTIR spectroscopy, AFM, and zeta potential measurements). The nanobioimpact of Citrus-based AgNPs on four invasive wetland plants, Cattail (Typha latifolia), Flowering-rush (Butomus umbellatus), Duckweed (Lemna minor), and Water-pepper (Polygonum hydropiper), was studied by absorption spectroscopy, by monitoring the spectral signature of chlorophyll. The invasive plants exhibited different behavior under AgNP stress. Deep insights were obtained from experiments conducted on biomimetic membranes marked with chlorophyll a. Our results pointed out the potential use of Citrus-based AgNPs as alternative in controlling pathogens in aqueous media and in management of aquatic weeds growth

    Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

    No full text
    In the last decade, building biohybrid materials has gained considerable interest in the field of nanotechnology. This paper describes an original design for bionanoarchitectures with interesting properties and potential bioapplications. Multilamellar lipid vesicles (obtained by hydration of a dipalmitoyl phosphatidylcholine thin film) with and without cholesterol were labelled with a natural photopigment (chlorophyll a), which functioned as a sensor to detect modifications in the artificial lipid bilayers. These biomimetic membranes were used to build non-covalent structures with single-walled carbon nanotubes. Different biophysical methods were employed to characterize these biohybrids such as: UV–vis absorption and emission spectroscopy, zeta potential measurements, AFM and chemiluminescence techniques. The designed, carbon-based biohybrids exhibited good physical stability, good antioxidant and antimicrobial properties, and could be used as biocoating materials. As compared to the cholesterol-free samples, the cholesterol-containing hybrid structures demonstrated better stability (i.e., their zeta potential reached the value of −36.4 mV), more pronounced oxygen radical scavenging ability (affording an antioxidant activity of 73.25%) and enhanced biocidal ability, offering inhibition zones of 12.4, 11.3 and 10.2 mm in diameter, against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis, respectively

    Raman Spectroscopy: In Vivo Application for Bone Evaluation in Oral Reconstructive (Regenerative) Surgery

    No full text
    The aim of this study was to evaluate the quality of the bone, revealing the different phases for calcified tissues independent of the medical history of the patient in relation to periodontitis by means of in vivo Raman spectroscopy. Raman spectroscopy measurements were performed in vivo during surgery and then ex vivo for the harvested bone samples for the whole group of patients (ten patients). The specific peaks for the Raman spectrum were traced for reference compounds (e.g., calcium phosphates) and bone samples. The variation in the intensity of the spectrum in relation to the specific bone constituents’ concentrations reflects the bone quality and can be strongly related with patient medical status (before dental surgery and after a healing period). Moreover, bone sample fluorescence is related to collagen content, enabling a complete evaluation of bone quality including a “quasi-quantification” of the healing process similar to the bone augmentation procedure. A complete evaluation of the processed spectra offers quantitative/qualitative information on the condition of the bone tissue. We conclude that Raman spectroscopy can be considered a viable investigation method for an in vivo and quick bone quality assessment during oral and periodontal surgery

    Graphene-Based Sensor for the Detection of Cortisol for Stress Level Monitoring and Diagnostics

    No full text
    In this work, we study the sensing properties of multi-layer graphene combined with pyrrole in order to elaborate low-cost, high-sensitive material for cortisol detection. Graphene nanoplatelets and pyrrole were dispersed in a solution containing 1M HNO3 by using a powerful ultrasound probe for 10 min, then centrifuged for 30 min at 4000 rpm; polymerization was performed by cyclic voltammetry. The graphene–pyrrole composite was tested to ultra-low levels of cortisol in artificial saliva, consistent to the levels excreted in human salivary samples. The composite was further investigated by Raman spectroscopy and we modeled the interaction between the sensitive layer and cortisol using MarvinBeans software. It shows a good sensitivity for salivary values of cortisol cyclic voltammetry being able to detect a level down to 0.5 ng/mL cortisol

    Identification of Uric Acid Crystals Accumulation in Human and Animal Tissues Using Combined Morphological and Raman Spectroscopy Analysis

    No full text
    Gout is a metabolic condition, common to animals and humans, issuing from the excessive accumulation of end products of proteins degradation. In this study, histopathological and cytological examinations, combined with Raman spectroscopy, have been performed to investigate tissue samples from reptiles, chickens, and humans, presenting lesions produced by uric acid accumulation. As a result of classic processing and staining techniques commonly used in the anatomopathological diagnosis, uric acid crystals lose their structural characteristics, thus making difficult a precise diagnostic. Therefore, complementary diagnostic methods, such as Raman spectroscopy, are needed. This study compares from several perspectives the above mentioned diagnostic methods, concluding that Raman spectroscopy provides highlights in the diagnosis of gout in humans and animals, also adding useful information to differential diagnosis of lesions

    Functionalized Carbon Nanotubes for Chemical Sensing: Electrochemical Detection of Hydrogen Isotopes

    No full text
    In this study, we propose a palladium-functionalized CNT composite working as a sensitive material to evaluate the deuterium concentration in aqueous samples. The sensitive material was prepared by the deposition of Pd nanoparticles onto MWCNT–OH by the micellization process. A modified electrode was prepared by drop casting 60 μL of Pd-decorated MWCNT suspension on a clean glassy carbon electrode surface. The sensing behavior was investigated in a series of deuterium-enriched solutions ranging from 25 to 10,000 ppm. We performed cyclic voltammetry and impedance spectroscopy studies on the samples. The process is quasi-reversible with the reduction curve more pronounced than the oxidation curve, which indicates a low tendency to desorption for the hydrogen atoms

    Raman Spectroscopy as Spectral Tool for Assessing the Degree of Conversion after Curing of Two Resin-Based Materials Used in Restorative Dentistry

    No full text
    (1) Background: The treatment of dental cavities and restoration of tooth shape requires specialized materials with specific clinical properties, including being easy to model, light-cured, having a natural color, reduced shrinkage, a hardness similar to hydroxyapatite, and no leakage. The dimensional stability of resin composite materials is affected by polymerization shrinkage, degree of conversion (number of π carbon bonds converted into σ ones), thermal contraction and expansion, and interactions with an aqueous environment. (2) Methods: The materials used in our investigation were two composite resins with similar polymer matrices, but different filler (micro/nano filler). To evaluate the properties of samples, we employed the pycnometer technique (pycnometer from Paul Marienfeld Gmbh, Lauda-Königshofen, Germany), RAMAN spectroscopy technique (MiniRam Equipment from B&W Tek Inc., Plainsboro Township, NJ, USA; 785 nm laser source), SEM and EDX (FEI Inspect S.). (3) Results: The size of the filler plays an important role in the polymerization: for the pycnometric results, the larger particle filler (Sample 1) seems to undergo a rapid polymerization during the 45 s curing, while the nanoparticle filer (Sample 2) needs additional curing time to fully polymerize. This is related to a much larger porosity, as proved by SEM images. The lower degree of conversion, as obtained by Raman spectroscopy, in the same geometry means that the same volume is probed for both samples, but Sample 1 is more porous, which means less amount of polymer is probed for Sample 1. (4) Conclusions: For the two composites, we obtained a degree of conversion of 59% for Sample 1 and 93% for Sample 2, after 45 s of curing

    Performance Assessment of Three Similar Dental Restorative Composite Materials via Raman Spectroscopy Supported by Complementary Methods Such as Hardness and Density Measurements

    No full text
    (1) Background: A widespread problem in oral health is cavities produced by cariogenic bacteria that consume fermentable carbohydrates and lower pH to 5.5–6.5, thus extracting Ca2+ and phosphate ions (PO43−) from teeth. Dental restorative materials based on polymers are used to fill the gaps in damaged teeth, but their properties are different from those of dental enamel. Therefore, a question is raised about the similarity between dental composites and natural teeth in terms of density and hardness. (2) Methods: We have used Raman spectroscopy and density and microhardness measurements to compare physical characteristics of several restorative dental composites at different polymerization intervals. (3) Results: XRVHerculite®, Optishade®, and VertiseFlow® showed the very different characteristics of the physical properties following four polymerization intervals. Of the three composites, OptiShade showed the highest polymerization rate. (4) Conclusions: Only fully polymerized composites can be used in teeth restoring, because incomplete polymerization would result in cracks, pitting, and lead finally to failure

    Current Innovative Methods of Fetal pH Monitoring—A Brief Review

    No full text
    In this study, we explore the “why?”, and “how?”, monitoring the pH of the fetal scalp is used, and show its limitations. In addition, we review the development of new devices based on the modern physics and nanomaterials serving this topic. Most of the works we found in our search have focused on improving the prognostic of fetal heart rate monitoring, because it is the “golden standard” in determining fetal distress. Although the best-known screening method, it can only provide limited information about the actual status of the fetus. The best predictive assessment, with the highest reproducibility, states that a normal fetal heart rate is indicative of a healthy baby. However, its excellent sensitivity is much reduced when identifying the actual “distress”. This is when second-line monitoring methods come into play to guide the diagnostics and direct the obstetrician towards an action plan. Although a historic method, fetal scalp pH sampling is still under review as to its efficiency and place in the current obstetrics. Continuous surveillance of the fetal parameters is important, especially for the fetuses undergoing intrauterine growth restricted (IUGR). Since fetal scalp blood sampling is still under research and is a randomized controlled trial, which compares the relevance of pH and lactates to the obstetrical situation, the maternal-fetal medicine could greatly benefit from the introduction of engineered nanomedicines to the field

    Uterine Artery Embolization Combined with Subsequent Suction Evacuation as Low-Risk Treatment for Cesarean Scar Pregnancy

    No full text
    Objective: The aim of this study is to propose a standardized management of care for patients diagnosed with cesarean scar pregnancy (CSP). There are two types of CSP: Type 1 (on the scar) vs. type 2 (in the niche). To date there is no international standard to predict the extent of invasion or the optimal management of CSP. Materials and methods: We used intramuscular methotrexate injection followed by uterine artery embolization combined with suction evacuation as a conservative approach for the treatment of seven patients diagnosed with CSP. Our inclusion criteria, to be satisfied simultaneously, were established as follows: (1) patients with CSP; (2) early gestational age ≤ 9 weeks, and (3) written consent of the proposed treatment of the patient. Results: This course of treatment produced a positive outcome in all cases. We did not have any complications (e.g., emergency hysterectomy, perforation of the uterine cavity, severe hemorrhage, or endometritis) during the procedures or in the follow-up. The most important predictors of successful management are early diagnosis of CSP and orientation of the invasive trophoblast opposite to the scar. Conclusions: The main finding from this series of cases is that associating systemic methotrexate and uterine artery embolization provides efficient and low-risk management of CSP. This treatment regime is adequate for both types of CSPs. We consider that early localization diagnosis of pregnancy following a cesarean delivery is mandatory for CSP morbidity prevention
    corecore