6 research outputs found

    Stereotactic radiotherapy for spinal hemangioblastoma — disease control and volume analysis in long-term follow up

    Get PDF
    Background: This retrospective analysis evaluated the long-term outcome of spinal stereotactic body radiotherapy (SBRT) treatment for hemangioblastomas. Materials and methods: Between 2010 and 2018, 5 patients with 18 Von-Hippel Lindau-related pial-based spinal hemangioblastomas were treated with fractionated SBRT. After precisely registering images of all relevant datasets, we delineated the gross tumor volume, spinal cord (including intramedullary cysts and/or syrinxes), and past radiotherapy regions. A sequential optimization algorithm was used for dose determinations, and patients received 25–26 Gy in five fractions or 24 Gy in three fractions. On-line image guidance, based on spinal bone structures, and two orthogonal radiographs were provided. The actuarial nidus control, surgery-free survival, cyst/syrinx changes, and progression-free survival were calculated with the Kaplan-Meier method. Toxicities were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events v5.0. Results: The median follow-up was 5 years after SBRT. Patients displayed one nidus progression, one need of neurosurgery, and two cyst/syrinx progressions directly connected to symptom worsening. No SBRT-related complications or acute adverse radiation-related events occurred. However, one asymptomatic radiological sign of myelopathy occurred two years after SBRT. All tumors regressed; the one-year equivalent tumor volume reduction was 0.2 mL and the median volume significantly decreased by 28% (p = 0.012). Tumor volume reductions were not correlated with the mean (p = 0.19) or maximum (p = 0.16) dose. Conclusions: SBRT for pial-based spinal hemangioblastomas was an effective, safe, viable alternative to neurosurgery in asymptomatic patients. Escalating doses above the conventional dose-volume limits of spinal cord tolerance showed no additional benefit.

    Effects of Reoperation Timing on Survival among Recurrent Glioblastoma Patients: A Retrospective Multicentric Descriptive Study

    No full text
    Glioblastoma inevitably recurs, but no standard regimen has been established for treating this recurrent disease. Several reports claim that reoperative surgery can improve survival, but the effects of reoperation timing on survival have rarely been investigated. We, therefore, evaluated the relationship between reoperation timing and survival in recurrent GBM. A consecutive cohort of unselected patients (real-world data) from three neuro-oncology cancer centers was analyzed (a total of 109 patients). All patients underwent initial maximal safe resection followed by treatment according to the Stupp protocol. Those meeting the following criteria during progression were indicated for reoperation and were further analyzed in this study: (1) The tumor volume increased by >20–30% or a tumor was rediscovered after radiological disappearance; (2) The patient’s clinical status was satisfactory (KS ≥ 70% and PS WHO ≤ gr. 2); (3) The tumor was localized without multifocality; (4) The minimum expected tumor volume reduction was above 80%. A univariate Cox regression analysis of postsurgical survival (PSS) revealed a statistically significant effect of reoperation on PSS from a threshold of 16 months after the first surgery. Cox regression models that stratified the Karnofsky score with age adjustment confirmed a statistically significant improvement in PSS for time-to-progression (TTP) thresholds of 22 and 24 months. The patient groups exhibiting the first recurrence at 22 and 24 months had better survival rates than those exhibiting earlier recurrences. For the 22-month group, the HR was 0.5 with a 95% CI of (0.27, 0.96) and a p-value of 0.036. For the 24-month group, the HR was 0.5 with a 95% CI of (0.25, 0.96) and a p-value of 0.039. Patients with the longest survival were also the best candidates for repeated surgery. Later recurrence of glioblastoma was associated with higher survival rates after reoperation

    Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival

    No full text
    Abstract Glioblastoma stem-like cells (GSCs) are critical for the aggressiveness and progression of glioblastoma (GBM) and contribute to its resistance to adjuvant treatment. MicroRNAs (miRNAs) are small, non-coding RNAs controlling gene expression at the post-transcriptional level, which are known to be important regulators of the stem-like features. Moreover, miRNAs have been previously proved to be promising diagnostic biomarkers in several cancers including GBM. Using global expression analysis of miRNAs in 10 paired in-vitro as well as in-vivo characterized primary GSC and non-stem glioblastoma cultures, we identified a miRNA signature associated with the stem-like phenotype in GBM. 51 most deregulated miRNAs classified the cell cultures into GSC and non-stem cell clusters and identified a subgroup of GSC cultures with more pronounced stem-cell characteristics. The importance of the identified miRNA signature was further supported by demonstrating that a Risk Score based on the expression of seven miRNAs overexpressed in GSC predicted overall survival in GBM patients in the TCGA dataset independently of the IDH1 status. In summary, we identified miRNAs differentially expressed in GSCs and described their association with GBM patient survival. We propose that these miRNAs participate on GSC features and could represent helpful prognostic markers and potential therapeutic targets in GBM
    corecore