55 research outputs found

    Liquid Transport Rates during Binary Collisions of Unequally-sized Particles

    Get PDF
    In this paper, we study the liquid transport between particles of different sizes, as well as build a dynamic liquid bridge model to predict liquid transport between these two particles. Specifically, the drainage process of liquid adhering to two unequally-sized, non-porous wet particles is simulated using direct numerical simulations (DNS). Same as in our previous work (Wu et al., AIChE Journal, 2016, 62:1877–1897), we first provide an analytical solution of a proposed dynamic liquid bridge model. We find that such an analytical solution also describes liquid transport during collisions of unequally-sized particles very well. Finally, we show that our proposed model structure is sufficient to collapse all our direct numerical simulation data. Our model is hence able to predict liquid transport rates in size-polydisperse systems for a wide range of parameter

    Parscale - an open-source library for the simulation of intra-particle heat and mass transport processes in coupled simulations

    Get PDF
    We introduce the open-source library ParScale for the modeling of intra-particle transport processes in non-isothermal reactive fluid-particle flows. The underlying equations, the code architecture, as well as the coupling strategy to the widely-used DEM solver LIGGGHTS is presented. A set of verification cases, embedded into an automated test harness, is presented that proofs the functionality of ParScale. To demonstrate the capabilities of ParScale, we perform simulations of a non-isothermal granular shear flow including heat transfer to the surrounding fluid. We present results for the conductive heat flux through the particle bed for a wide range of dimensionless cooling rates and particle volume fractions. Our data suggests that intra-particle temperature gradients need to be considered for an accurate prediction of the conductive flux in case of (i) a dense particle bed and (ii) for large cooling rates characterized by a critical Biot number of ca Bicrit ≈ 0.1
    • …
    corecore