2,038 research outputs found

    Geant4 validation with CMS calorimeters test-beam data

    Full text link
    CMS experiment is using Geant4 for Monte-Carlo simulation of the detector setup. Validation of physics processes describing hadronic showers is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c.Comment: Poster presented at the Hadron Collider Physics Symposium (HCP2008), Galena, Illinois, USA, May 27-31, 2008; 5 pages, LaTeX, 28 eps figure

    Calorimetry Task Force Report

    Get PDF
    In this note we summarize the studies and recommendations of the calorimeter simulation task force (CaloTF). The CaloTF was established in February 2008 in order to understand and reconcile the discrepancies observed between the CMS calorimetry simulation and the test beam data recorded during 2004 and 2006. As the result of studies by the CaloTF a new version of Geant4 was developed and introduced in the CMS detector simulation leading to significanly better agreement with test beam data. Fast and flexible parameterizations describing showering in the calorimeter are introduced both in the Full Simulation (with a Gflash-like approach) and in the Fast Simulation. The CaloTF has developed a strategy to rapidly tune the CMS calorimeter simulation using the first LHC collision data when it becomes available. The improvements delivered by the CaloTF have been implemented in the software release CMSSW 2.1.0

    An RPC-based Technical Trigger for the CMS Experiment

    Get PDF
    In the CMS experiment, sub-detectors may send special trigger signals, called "Technical Triggers", for special purposes like test and calibration. The Resistive Plate Chambers are part of the Muon Trigger System of the experiment, but might also produce a cosmic muon trigger as Technical Trigger to be used during the commissioning to the detectors, the CMS magnet Test Cosmic Challenge and the later running of CMS. The proposed implementation is based on the development of a new board, the RBC Balcony Collector (RBC); the test results on prototypes and their performance during the recent CMS Cosmic Challenge are presented

    Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    Get PDF
    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%

    Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    Get PDF
    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile

    Synchronization and Timing in CMS HCAL

    Get PDF
    The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance

    Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    Get PDF
    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%
    • …
    corecore