16 research outputs found
Engineering Local optimality in Quantum Monte Carlo algorithms
Quantum Monte Carlo algorithms based on a world-line representation such as
the worm algorithm and the directed loop algorithm are among the most powerful
numerical techniques for the simulation of non-frustrated spin models and of
bosonic models. Both algorithms work in the grand-canonical ensemble and have a
non-zero winding number. However, they retain a lot of intrinsic degrees of
freedom which can be used to optimize the algorithm. We let us guide by the
rigorous statements on the globally optimal form of Markov chain Monte Carlo
simulations in order to devise a locally optimal formulation of the worm
algorithm while incorporating ideas from the directed loop algorithm. We
provide numerical examples for the soft-core Bose-Hubbard model and various
spin-S models.Comment: replaced with published versio
Phase diagram of Bose-Fermi mixtures in one-dimensional optical lattices
The ground state phase diagram of the one-dimensional Bose-Fermi Hubbard
model is studied in the canonical ensemble using a quantum Monte Carlo method.
We focus on the case where both species have half filling in order to maximize
the pairing correlations between the bosons and the fermions. In case of equal
hopping we distinguish between phase separation, a Luttinger liquid phase and a
phase characterized by strong singlet pairing between the species. True
long-range density waves exist with unequal hopping amplitudes.Comment: 5 pages, 5 figures, replaced with published versio
Quantum phase diagram of the integrable p_x+ip_y fermionic superfluid
We determine the zero temperature quantum phase diagram of a p_x+ip_y pairing
model based on the exactly solvable hyperbolic Richardson-Gaudin model. We
present analytical and large-scale numerical results for this model. In the
continuum limit, the exact solution exhibits a third-order quantum phase
transition, separating a strong-pairing from a weak-pairing phase. The mean
field solution allows to connect these results to other models with p_x+ip_y
pairing order. We define an experimentally accessible characteristic length
scale, associated with the size of the Cooper pairs, that diverges at the
transition point, indicating that the phase transition is of a
confinement-deconfinement type without local order parameter. We show that this
phase transition is not limited to the p_x+ip_y pairing model, but can be found
in any representation of the hyperbolic Richardson-Gaudin model and is related
to a symmetry that is absent in the rational Richardson-Gaudin model.Comment: 12 figure
Composite fermion-boson mapping for fermionic lattice models
We present a mapping of elementary fermion operators onto a quadratic form of
composite fermionic and bosonic operators. The mapping is an exact isomorphism
as long as the physical constraint of one composite particle per cluster is
satisfied. This condition is treated on average in a composite particle
mean-field approach, which consists of an ansatz that decouples the composite
fermionic and bosonic sectors. The theory is tested on the one- and
two-dimensional Hubbard models. Using a Bogoliubov determinant for the
composite fermions and either a coherent or Bogoliubov state for the bosons, we
obtain a simple and accurate procedure for treating the Mott insulating phase
of the Hubbard model with mean-field computational cost
Optimal Monte Carlo Updating
Based on Peskun's theorem it is shown that optimal transition matrices in
Markov chain Monte Carlo should have zero diagonal elements except for the
diagonal element corresponding to the largest weight. We will compare the
statistical efficiency of this sampler to existing algorithms, such as
heat-bath updating and the Metropolis algorithm. We provide numerical results
for the Potts model as an application in classical physics. As an application
in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model
which have been simulated by the directed loop algorithm in the stochastic
series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio
Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis
Objective Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. Design We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. Results We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07x10(-9)). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. Conclusion We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene.Peer reviewe
An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation
Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein a (C/EBP alpha), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located 142 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only
Age-Dependent Effects of Methylphenidate on the Human Dopaminergic System in Young vs Adult Patients With Attention-Deficit/Hyperactivity Disorder: A Randomized Clinical Trial
Although numerous children receive methylphenidate hydrochloride for the treatment of attention-deficit/hyperactivity disorder (ADHD), little is known about age-dependent and possibly lasting effects of methylphenidate on the human dopaminergic system. To determine whether the effects of methylphenidate on the dopaminergic system are modified by age and to test the hypothesis that methylphenidate treatment of young but not adult patients with ADHD induces lasting effects on the cerebral blood flow response to dopamine challenge, a noninvasive probe for dopamine function. A randomized, double-blind, placebo-controlled trial (Effects of Psychotropic Drugs on Developing Brain-Methylphenidate) among ADHD referral centers in the greater Amsterdam area in the Netherlands between June 1, 2011, and June 15, 2015. Additional inclusion criteria were male sex, age 10 to 12 years or 23 to 40 years, and stimulant treatment-naive status. Treatment with either methylphenidate or a matched placebo for 16 weeks. Change in the cerebral blood flow response to an acute challenge with methylphenidate, noninvasively assessed using pharmacological magnetic resonance imaging, between baseline and 1 week after treatment. Data were analyzed using intent-to-treat analyses. Among 131 individuals screened for eligibility, 99 patients met DSM-IV criteria for ADHD, and 50 participants were randomized to receive methylphenidate and 49 to placebo. Sixteen weeks of methylphenidate treatment increased the cerebral blood flow response to methylphenidate within the thalamus (mean difference, 6.5; 95% CI, 0.4-12.6; P = .04) of children aged 10 to 12 years old but not in adults or in the placebo group. In the striatum, the methylphenidate condition differed significantly from placebo in children but not in adults (mean difference, 7.7; 95% CI, 0.7-14.8; P = .03). We confirm preclinical data and demonstrate age-dependent effects of methylphenidate treatment on human extracellular dopamine striatal-thalamic circuitry. Given its societal relevance, these data warrant replication in larger groups with longer follow-up. identifier: NL34509.000.10 and trialregister.nl identifier: NTR310