23 research outputs found

    Kidins220/ARMS Is a Novel Modulator of Short-Term Synaptic Plasticity in Hippocampal GABAergic Neurons

    Get PDF
    Kidins220 (Kinase D interacting substrate of 220 kDa)/ARMS (Ankyrin Repeat-rich Membrane Spanning) is a scaffold protein highly expressed in the nervous system. Previous work on neurons with altered Kidins220/ARMS expression suggested that this protein plays multiple roles in synaptic function. In this study, we analyzed the effects of Kidins220/ARMS ablation on basal synaptic transmission and on a variety of short-term plasticity paradigms in both excitatory and inhibitory synapses using a recently described Kidins220 full knockout mouse. Hippocampal neuronal cultures prepared from embryonic Kidins220−/− (KO) and wild type (WT) littermates were used for whole-cell patch-clamp recordings of spontaneous and evoked synaptic activity. Whereas glutamatergic AMPA receptor-mediated responses were not significantly affected in KO neurons, specific differences were detected in evoked GABAergic transmission. The recovery from synaptic depression of inhibitory post-synaptic currents in WT cells showed biphasic kinetics, both in response to paired-pulse and long-lasting train stimulation, while in KO cells the respective slow components were strongly reduced. We demonstrate that the slow recovery from synaptic depression in WT cells is caused by a transient reduction of the vesicle release probability, which is absent in KO neurons. These results suggest that Kidins220/ARMS is not essential for basal synaptic transmission and various forms of short-term plasticity, but instead plays a novel role in the mechanisms regulating the recovery of synaptic strength in GABAergic synapses

    Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)

    Get PDF
    ICDP workshop COring the NOrth Sea Cenozoic focused on the scientific objectives and the technical aspects of drilling and sampling. Some 55 participants attended the meeting, ranging from climate scientists, drilling engineers, and geophysicists to stratigraphers and public outreach experts. Discussion on the proposed research sharpened the main research lines and led to working groups and the necessary technical details to compile a full proposal that was submitted in January 2016

    A new rheological model for thixoelastic materials in subaqueous gravity driven flows

    No full text
    A new viscoelastic constitutive model for subaqueous clay-rich gravity flows is presented. It is explained that for the materials which exhibit a minimum in their strain controlled flow curves the structure parameter must be a symmetric function of the strain rate and the stress. Therefore, the destruction of structure within the material is modeled using the dissipation energy. An expression for the elastic strain of the flowing structure is derived. The final set of equations can reproduce the viscosity bifurcation that clay suspensions may exhibit under a given load. This is explained to be important for the prediction of the run-out distance of clay-rich gravity flows. The ability of the model to reproduce the general response of pasty materials to step stress and step shear rate tests is examined. The model requires four empirical parameters. A methodology is presented for obtaining these parameters and power law functions are given for their calculations for a limited rest time of 3000 s. The ability of the model to reproduce the rheological behavior that clay-rich suspensions exhibit under both stress and strain controlled conditions is examined using rheometry tests

    High-resolution clinoform characterization by 2-D model-driven seismic Bayesian inversion

    No full text
    Many important details of potential subsurface reservoirs that we wish to characterize are only indirectly present in the reflected wavefields measured at the Earth’s surface. Therefore, the analysis of seismic data always presents an inversion problem. Instead of analyzing the data trace by trace, we propose an automated procedure that adjusts the parameters of a two-dimensional geological model by minimizing the mismatch between the simulated and measured seismic. This approach differs from standard inversion problems in that the size of the required details of the 2D geological reservoir model is far below the limits of the seismic resolution

    A new rheological model for thixoelastic materials in subaqueous gravity driven flows

    No full text
    A new viscoelastic constitutive model for subaqueous clay-rich gravity flows is presented. It is explained that for the materials which exhibit a minimum in their strain controlled flow curves the structure parameter must be a symmetric function of the strain rate and the stress. Therefore, the destruction of structure within the material is modeled using the dissipation energy. An expression for the elastic strain of the flowing structure is derived. The final set of equations can reproduce the viscosity bifurcation that clay suspensions may exhibit under a given load. This is explained to be important for the prediction of the run-out distance of clay-rich gravity flows. The ability of the model to reproduce the general response of pasty materials to step stress and step shear rate tests is examined. The model requires four empirical parameters. A methodology is presented for obtaining these parameters and power law functions are given for their calculations for a limited rest time of 3000 s. The ability of the model to reproduce the rheological behavior that clay-rich suspensions exhibit under both stress and strain controlled conditions is examined using rheometry tests
    corecore