105 research outputs found

    Value of Diffusion-Weighted MR Imaging for the Detection of Nephritis

    Get PDF
    Purpose. To evaluate diffusion-weighted MR imaging (DWI-MRI) for the detection and assessment of infectious renal disease. Materials and Methods. Twenty-one patients with suspicious increased signal intensity of the kidneys on DWI sequences and corresponding ADC decrease were identified. Sixty patients without clinical signs of renal infection served as a control group. All patients were examined with the following sequences: EPI-DWI (0/400/800 s/mm2), T2w HASTE, and T1w VIBE after intravenous injection of Gd-chelate. Confirmation of renal infection was established on the basis of clinical criteria. T1w and T2w images were assessed and compared to DWI for the presence of altered signal, and the degree of the visibility of pathology was graded on an ordinal three-point scale. Results. In all 21 patients with positive DWI findings a renal infection could be confirmed. T2w imaging and contrast-enhanced T1w imaging displayed obvious pathologic signal in 3/21 (14%) and 11/19 (58%) patients and slightly pathologic signal in 17/21 (81%) and 7/19 (37%), respectively. The median visibility score of 2 for the DWI and the T1w images was significantly higher than the score of 1 for the T2w imaging, (DWI versus T2w) and (T1w versus T2w). Conclusion. DWI of the kidneys seems to be highly sensitive for the detection of infections within the kidney

    Repeatability and reproducibility of cerebral 23Na imaging in healthy subjects

    Get PDF
    Abstract Background Initial reports of 23Na magnetic resonance imaging (MRI) date back to the 1970s. However, methodological challenges of the technique hampered its widespread adoption for many years. Recent technical developments have overcome some of these limitations and have led to more optimal conditions for 23Na-MR imaging. In order to serve as a reliable tool for the assessment of clinical stroke or brain tumor patients, we investigated the repeatability and reproducibility of cerebral sodium (23Na) imaging in healthy subjects. Methods In this prospective, IRB approved study 12 consecutive healthy volunteers (8 female, age 31 ± 8.3) underwent three cerebral 23Na-MRI examinations at 3.0 T (TimTrio, Siemens Healthineers) distributed between two separate visits with an 8 day interval. For each scan a T1w MP-RAGE sequence for anatomical referencing and a 3D-density-adapted, radial GRE-sequence for 23Na-imaging were acquired using a dual-tuned (23Na/1H) head-coil. On 1 day, these scans were repeated consecutively; on the other day, the scans were performed once. 23Na-sequences were reconstructed according to the MP-RAGE sequence, allowing direct cross-referencing of ROIs. Circular ROIs were placed in predetermined anatomic regions: gray and white matter (GM, WM), head of the caudate nucleus (HCN), pons, and cerebellum. External 23Na-reference phantoms were used to calculate the tissue sodium content. Results Excellent correlation was found between repeated measurements on the same day (r2 = 0.94), as well as on a different day (r2 = 0.86). No significant differences were found based on laterality other than in the HCN (63.1 vs. 58.7 mmol/kg WW on the right (p = 0.01)). Pronounced inter-individual differences were identified in all anatomic regions. Moderate to good correlation (0.310 to 0.701) was found between the readers. Conclusion Our study has shown that intra-individual 23Na-concentrations in healthy subjects do not significantly differ after repeated scans on the same day and a pre-set time interval. This confirms the repeatability and reproducibility of cerebral 23Na-imaging. However, with manual ROI placement in predetermined anatomic landmarks, fluctuations in 23Na-concentrations can be observed

    Calcification score versus arterial stenosis grading: comparison of two CT-based methods for risk assessment of anastomotic leakage after esophagectomy and gastric pull-up

    Get PDF
    Purpose: Anastomotic leakage is a major surgical complication following esophagectomy and gastric pull-up. Specific risk factors such as celiac trunk (TC) stenosis and high calcification score of the aorta have been identified, but no data are available on their relative prognostic values. This retrospective study aimed to compare and evaluate calcification score versus stenosis quantification with regards to prognostic impact on anastomotic leakage. Patients and methods: Preoperative contrast-enhanced computed tomography scans of 164 consecutive patients with primary esophageal cancer were evaluated by two radiologists to apply a calcification score (0-3 scale) assessing the aorta, the celiac axis and the right and left postceliac arteries. Concurrently, the presence and degree of stenosis of TC and superior mesenteric artery were recorded for stenosis quantification. Results: Anastomotic leakage was noted in 14/164 patients and 12/14 showed stenosis of TC (n=11). The presence of TC stenosis was found to have a significant impact on anastomotic healing (p=0.004). The odds ratio for the prediction of anastomotic leakage by the degree of stenosis was 1.04 (95% CI, 1.02-1.07). Ten of 14 patients had aortic calcification scores of 1 or 2, but calcification scores of the aorta, the celiac axis and the right and left postceliac arteries did not correlate with the corresponding TC stenosis values and showed no influence on patient outcome as defined by the occurrence of anastomotic insufficiency (p=0.565, 0.855, 0.518 and 1.000, respectively). Inter-reader reliability of computed tomography analysis and absolute agreement on calcium scoring was mostly over 90%. No significant differences in preoperative comorbidities and patient characteristics were found between those with and without anastomotic leakage. Conclusion: Measurement of TC stenosis in preoperative contrast-enhanced computed tomography scans proved to be more reliable than calcification scores in predicting anastomotic leakage and should, therefore, be used in the risk assessment of patients undergoing esophagectomy and gastric pull-up

    Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen

    Get PDF
    Background: To retrospectively and prospectively compare abdominal apparent diffusion coefficient (ADC) values obtained within in a 1.5 T system and 3 T systems with and without dual-source parallel RF excitation techniques. Methodology/Principal Findings: After IRB approval, diffusion-weighted (DW) images of the abdomen were obtained on three different MR systems (1.5 T, a first generation 3 T, and a second generation 3 T which incorporates dual-source parallel RF excitation) on 150 patients retrospectively and 19 volunteers (57 examinations total) prospectively. Seven regions of interest (ROI) were throughout the abdomen were selected to measure the ADC. Statistical analysis included independent two-sided t-tests, Mann-Whitney U tests and correlation analysis. In the DW images of the abdomen, mean ADC values were nearly identical with nonsignificant differences when comparing the 1.5 T and second generation 3 T systems in all seven anatomical regions in the patient population and six of the seven in the volunteer population (p.0.05 in all distributions). The strength of correlation measured in the volunteer population between the two scanners in the kidneys ranged from r = 0.64–0.88 and in the remaining regions (besides the spleen), r.0.85. In the patient population the first generation 3 T scanner had different mean ADC values with significant differences (p,0.05) compared to the other two scanners in each of the seven distributions. In the volunteer population, the kidneys shared similar ADC mean values in comparison to the other two scanners with nonsignificant differences

    Modern imaging techniques in urinary stone disease

    No full text
    Purpose of review Radiological imaging techniques are a fast developing field in medicine. Therefore, the purpose of this review was to identify and discuss the latest changes of modern imaging techniques in the management of urinary stone disease. Recent findings The introduction of iterative image reconstruction enables low-dose and ultra-low-dose (ULD) protocols. Although current guidelines recommend their utilization in nonobese patients recent studies indicate that low-dose imaging may be feasible in obese (< 30 kg/m(2)) but not in bariatric patients. Use of dual energy computed tomography (CT) technologies should balance between additional information and radiation dose aspects. If available on a dose neutral basis, dual energy imaging and analysis should be performed. Current guidelines recommend measuring the largest diameter for clinical decision making; however, recent studies suggest a benefit from measuring the volume based on multiplanar reformation. Quantitative imaging is still an experimental approach. Summary The use of low-dose and even ULD CT protocols should be diagnostic standard, even in obese patients. If dual energy imaging is available, it should be limited to specific clinical questions. The stone volume should be reported in addition to the largest diameter for treatment decision and a more valid comparability of upcoming studies

    Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator

    No full text
    Sodium magnetic resonance imaging (Na-23 MRI) is a unique and non-invasive imaging technique which provides important information on cellular level about the tissue of the human body. Several applications for Na-23 MRI were investigated with regard to the examination of the tissue viability and functionality for example in the brain, the heart or the breast. The Na-23 MRI technique can also be integrated as a potential monitoring instrument after radio-therapy or chemotherapy. The main contribution in this work was the adaptation of Na-23 MRI for spine imaging, which can provide essential information on the integrity of the intervertebral disks with respect to the early detection of disk degeneration. In this work, a transmit-only receive-only dual resonator system was designed and developed to cover the whole human spine using Na-23 MRI and increase the receive sensitivity. The resonator system consisted of an already presented Na-23 whole-body resonator and a newly developed 5-channel receive-only phased-array. The resonator system was first validated using bench top and phantom measurements. A threefold SNR improvement at the depth of the spine (similar to 7 cm) over the whole-body resonator was achieved using the spine array. Na-23 MR measurements of the human spine using the transmit-only receive-only resonator system were performed on a healthy volunteer within an acquisition time of 10 minutes. A density adapted 3D radial sequence was chosen with 6 mm isotropic resolution, 49 ms repetition time and a short echo time of 540 mu s. Furthermore, it was possible to quantify the tissue sodium concentration in the intervertebral discs in the lumbar region (120 ms repetition time) using this setup

    Fast Inner-Volume Imaging of the Lumbar Spine with a Spatially Focused Excitation Using a 3D-TSE Sequence

    No full text
    Rationale and Objectives: The purpose of this study was to evaluate the feasibility and technical quality of a zoomed three-dimensional (3D) turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip-angle evolutions (SPACE) sequence of the lumbar spine. Materials and Methods: In this prospective feasibility study, nine volunteers underwent a 3-T magnetic resonance examination of the lumbar spine including 1) a conventional 3D T2-weighted (T2w) SPACE sequence with generalized autocalibrating partially parallel acquisition technique acceleration factor 2 and 2) a zoomed 3D T2w SPACE sequence with a reduced field of view (reduction factor 2). Images were evaluated with regard to image sharpness, signal homogeneity, and the presence of artifacts by two experienced radiologists. For quantitative analysis, signal-to-noise ratio (SNR) values were calculated. Results: Image sharpness of anatomic structures was statistically significantly greater with zoomed SPACE (P < .0001), whereas the signal homogeneity was statistically significantly greater with conventional SPACE (cSPACE; P = .0003). There were no statistically significant differences in extent of artifacts. Acquisition times were 8:20 minutes for cSPACE and 6:30 minutes for zoomed SPACE. Readers 1 and 2 selected zSPACE as the preferred sequence in five of nine cases. In two of nine cases, both sequences were rated as equally preferred by both the readers. SNR values were statistically significantly greater with cSPACE. Conclusions: In comparison to a cSPACE sequences, zoomed SPACE imaging of the lumbar spine provides sharper images in conjunction with a 25% reduction in acquisition time

    Effects of Bariatric Surgery on Non-alcoholic Fatty Liver Disease: Magnetic Resonance Imaging Is an Effective, Non-invasive Method to Evaluate Changes in the Liver Fat Fraction

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disease worldwide and is highly associated with obesity. The prevalences of both conditions have markedly increased in the Western civilization. Bariatric surgery is the most effective treatment for morbid obesity and its comorbidities such as NAFLD. Measure postoperative liver fat fraction (LFF) in bariatric patients by using in-opposed-phase MRI, a widely available clinical tool validated for the quantification of liver fat Retrospective analyses of participants, who underwent laparoscopic Roux-Y-gastric-bypass (17) or laparoscopic sleeve gastrectomy (2) were performed using magnetic resonance imaging (MRI), bioelectrical impedance analysis (BIA), and anthropometric measurements 1 day before surgery, as well as 6, 12, and 24 weeks after surgery, LFF was calculated from fat-only and water-only MR images. Six months after surgery, a significant decrease of LFF and liver volume has been observed along with weight loss, decreased waist circumference, and parameters obtained by body fat measured by BIA. LFF significantly correlated with liver volume in the postoperative course. MRI including in-opposed-phase imaging of the liver can detect the quantitative decrease of fatty infiltration within the liver after bariatric surgery and thus could be a valuable tool to monitor NAFLD/NASH postoperatively

    Dual-position calibration markers for total hip arthroplasty: theoretical comparison to fixed calibration and single marker method

    No full text
    PurposeDigital templating is considered a standard for total hip arthroplasty. Different means for the necessary calibration of radiographs are known. While single marker calibration with radiopaque spheres is the most common, it is associated with possible significant deviations from the true magnification of the hip. Notably, fixed magnification factors showed better results. Therefore, a dual-position calibration marker method was simulated and compared to the established methods.MethodsFirst, an empirical fixed magnification factor was identified and applied to a series of radiographs. Second, three magnification factors were generated based on sagittal patient data of 398 CT scans. These methods were compared to the fixed factor.ResultsThe fixed factor was 122.6%. In the clinical application, the error of the fixed factor was 2.5% while the error of the single marker was 5.2%. In the CT cohort, the mean reference factor was 120.5% in females and 120.3% in males. The reference factor was compared to sex-specific means, sex-specific linear functions, and sex-specific cubic functions. The best results were found for the linear regression model with a mean difference of 0.8% from the reference value. No proportional bias was found (p=0.623).ConclusionThe simulation of the dual-position marker method using the linear regression model showed promising results, superior to all other methods. In future studies, its clinical application should be tested

    Quantitative sodium MRI of kidney

    No full text
    One of the main tasks of the human kidneys is to maintain the homeostasis of the body's fluid and electrolyte balance by filtration of the plasma and excretion of the end products. Herein, the regulation of extracellular sodium in the kidney is of particular importance. Sodium MRI (Na-23 MRI) allows for the absolute quantification of the tissue sodium concentration (TSC) and thereby provides a direct link between TSC and tissue viability. Renal Na-23 MRI can provide new insights into physiological tissue function and viability thought to differ from the information obtained by standard H-1 MRI. Sodium imaging has the potential to become an independent surrogate biomarker not only for renal imaging, but also for oncology indications. However, this technique is now on the threshold of clinical implementation. Numerous, initial pre-clinical and clinical studies have already outlined the potential of this technique; however, future studies need to be extended to larger patient groups to show the diagnostic outcome. In conclusion, Na-23 MRI is seen as a powerful technique with the option to establish a non-invasive renal biomarker for tissue viability, but is still a long way from real clinical implementation. Copyright (c) 2015 John Wiley & Sons, Ltd
    • …
    corecore