3 research outputs found

    Antitumor activity of Bulgarian herb Tribulus terrestris L. on human breast cancer cells

    Get PDF
    Medicinal plants have been intensively studied as a source of antitumor compounds. Due to the beneficial climate conditions Bulgarian herbs have high pharmacological potential. Currently, the antitumor effect of the Bulgarian medicinal plant Tribulus terrestris L. on human cancer cell lines is not studied. The main active compounds of the plant are the steroid saponins.The present study aims to analyze the effect on cell viability and apoptotic activity of total extract and saponin fraction of Bulgarian Tribulus terrestris L. on human breast cancer (MCF7) and normal (MCF10A) cell lines. Antitumor effect was established by МТТ cell viability assay and assessment of apoptotic potential was done through analysis of genomic integrity (DNA fragmentation assay) and analysis of morphological cell changes (Fluorescence microscopy). The results showed that total extract of the herb has a marked dose-dependent inhibitory effect on viability of MCF7 cells (half maximal inhibitory concentration is 15 μg/ml). Cell viability of MCF10A was moderately decreased without visible dose-dependent effect. The saponin fraction has increased inhibitory effect on breast cancer cells compared to total extract. Morphological changes and DNA fragmentation were observed as markers for early and late apoptosis predominantly in tumor cells after treatment. Apoptotic processes were intensified with the increase of treatment duration.The obtained results are the first showing selective antitumor activity of Bulgarian Tribulus terrestris L. on human cancer cells in vitro. Apoptotic processes are involved in the antitumor mechanisms induced by the herb. This results give directions for future investigations concerning detailed assessment of its pharmacological potential

    Development and validation of analytical procedure for analysis of Amoxiciline, Metronidazole and Omeprazole, used as anti- Helicobacter pylori agents alone and in mixture

    Get PDF
    Background: The contemporary treatment of ulcerogenic diseases and gastroesophageal reflux disease is related usually to application of a combination of imidazole-based antibacterial, antibiotic and proton pump inhibitor. In the current study, the three most common representatives Amoxicilline (AMO), Metronidazole (MET) and Omeprazole (OME), respectively, are subjected to analysis through classical analytical procedure, providing high level accuracy, sensitivity and good separation abilities. As such a UV/VIS method was applied as a well known identification and quantitation technique for analyses in various samples. Furthermore, this technique is known to be a good detection method in combination with chromatographic systems. Purpose: A simple, specific, accurate and precise reverse phase-high performance liquid chromatographic method has been developed for the simultaneous determination of Amoxicillin Trihydrate (AMO), Metronidazole (MET) and Omeprazole (OME) in synthetic mixture. Materials and methods: Some important parameters like pH of the mobile phase, concentration of the acid or buffer solution, percentage and type of the organic modifier, etc. were tested for a good chromatographic separation. The sample was analyzed using a mobile phase of Acetonitrile: Phosphate buffer (pH=7.6±0.1) (40:60 v/v). The flow rate was 1.0 mL/ min with detection at 280 nm. Results: The retention time for AMO, MET and OME was found to be 1.67, 2.86 and 5.99 min respectively, and the recoveries in the synthetic mixture were between 98 and 102%. The validated method was linear over the concentration range of 25 to 200 μg/mL for AMO, 12.5 to 100 μg/mL for MET and 5–40 µg/mL for OME, with a correlation coefficient > 0.999. Conclusion: The developed method has been validated in accordance with the International Conference on Harmonization (ICH) guidelines and showed excellent linearity, accuracy, precision, specificity, robustness, as well as system suitability results within the acceptance criteria
    corecore