262 research outputs found

    Investigation of the marine compound spongistatin 1 links the inhibition of PKCĪ± translocation to nonmitotic effects of tubulin antagonism in angiogenesis

    Get PDF
    The aims of the study were to meet the demand of new tubulin antagonists with fewer side effects by characterizing the antiangiogenic properties of the experimental compound spongistatin 1, and to elucidate nonmitotic mechanisms by which tubulin antagonists inhibit angiogenesis. Although tubulin-inhibiting drugs and their antiangiogenic properties have been investigated for a long time, surprisingly little is known about their underlying mechanisms of action. Antiangiogenic effects of spongistatin 1 were investigated in endothelial cells in vitro, including functional cell-based assays, live-cell imaging, and a kinome array, and in the mouse cornea pocket assay in vivo. Spongistatin 1 inhibited angiogenesis at nanomolar concentrations (IC50: cytotoxicity>50 nM, proliferation 100 pM, migration 1.0 nM, tube formation 1.0 nM, chemotaxis 1.0 nM, aortic ring sprouting 500 pM, neovascularization in vivo 10 Ī¼g/kg). Further, a kinome array and validating data showed that spongistatin 1 inhibits the phosphorylation activity of protein kinase CĪ± (PKCĪ±), an essential kinase in angiogenesis, and its translocation to the membrane. Thus, we conclude that PKCĪ± might be an important target for the antiangiogenic effects of tubulin antagonism. In addition, the data from the kinase array suggest that different tubulin antagonists might have individual intracellular actions.ā€”Rothmeier, A. S., Ischenko, I., Joore, J., Garczarczyk, D., FuĀØrst, R., Bruns, C. J., Vollmar, A. M., Zahler, S. Investigation of the marine compound spongistatin 1 links the inhibition of PKCĪ± translocation to nonmitotic effects of tubulin antagonism in angiogenesis

    Insulin increases glomerular filtration barrier permeability through PKGIĪ±-dependent mobilization of BKCa channels in cultured rat podocytes

    Get PDF
    AbstractPodocytes are highly specialized cells that wrap around glomerular capillaries and comprise a key component of the glomerular filtration barrier. They are uniquely sensitive to insulin; like skeletal muscle and fat cells, they exhibit insulin-stimulated glucose uptake and express glucose transporters. Podocyte insulin signaling is mediated by protein kinase G type I (PKGI), and it leads to changes in glomerular permeability to albumin. Here, we investigated whether large-conductance Ca2+-activated K+ channels (BKCa) were involved in insulin-mediated, PKGIĪ±-dependent filtration barrier permeability.Insulin-induced glomerular permeability was measured in glomeruli isolated from Wistar rats. Transepithelial albumin flux was measured in cultured rat podocyte monolayers. Expression of BKCa subunits was detected by RT-PCR. BKCa, PKGIĪ±, and upstream protein expression were examined in podocytes with Western blotting and immunofluorescence. The BKCaā€“PKGIĪ± interaction was assessed with co-immunoprecipitation.RT-PCR showed that primary cultured rat podocytes expressed mRNAs that encoded the pore-forming Ī± subunit and four accessory Ī² subunits of BKCa. The BKCa inhibitor, iberiotoxin (ibTX), abolished insulin-dependent glomerular albumin permeability and PKGI-dependent transepithelial albumin flux. Insulin-evoked albumin permeability across podocyte monolayers was also blocked with BKCa siRNA. Moreover, ibTX blocked insulin-induced disruption of the actin cytoskeleton and changes in the phosphorylation of PKG target proteins, MYPT1 and RhoA.These results indicated that insulin increased filtration barrier permeability through mobilization of BKCa channels via PKGI in cultured rat podocytes. This molecular mechanism may explain podocyte injury and proteinuria in diabetes

    A universal strategy for high-yield production of soluble and functional clostridial collagenases in E. coli

    Get PDF
    Clostridial collagenases are foe and friend: on the one hand, these enzymes enable host infiltration and colonization by pathogenic clostridia, and on the other hand, they are valuable biotechnological tools due to their capacity to degrade various types of collagen and gelatine. However, the demand for high-grade preparations exceeds supply due to their pathogenic origin and the intricate purification of homogeneous isoforms. We present the establishment of an Escherichia coli expression system for a variety of constructs of collagenase G (ColG) and H (ColH) from Clostridium histolyticum and collagenase T (ColT) from Clostridium tetani, mimicking the isoforms in vivo. Based on a setup of five different expression strains and two expression vectors, 12 different constructs were expressed, and a flexible purification platform was established, consisting of various orthogonal chromatography steps adaptable to the individual needs of the respective variant. This fast, cost-effective, and easy-to-establish platform enabled us to obtain at least 10Ā mg of highly pure mono-isoformic protein per liter of culture, ideally suited for numerous sophisticated downstream applications. This production and purification platform paves the way for systematic screenings of recombinant collagenases to enlighten the biochemical function and to identify key residues and motifs in collagenolysis

    Metformin reduces NAD(P)H oxidase activity in mouse cultured podocytes through purinergic dependent mechanism by increasing extracellular ATP concentration

    Get PDF
    Hyperglycemia affects the functioning numbers of podocytes and leads to a gradual decline of renal function. The normalization of glucose level is a principle therapeutic goal in diabetic patients and metformin is a popular hypoglycemic drug used in type 2 diabetes mellitus. Metformin activates AMP-activated kinase (AMPK) and decreases NAD(P)H oxidase activity in podocytes leading to reduction of free radical generation. Similar effects are observed after activation of P2 receptors. Therefore, we investigated whether metformin increases extracellular ATP concentration and affects the activities of NAD(P) H oxidase and AMPK through P2 receptors. Experiments were performed on cultured mouse podocytes. NAD(P) H oxidase activity was measured by chemiluminescence and changes in AMPK activity were estimated by immunoblotting against AMPKĪ±-Thr 172 -P. Metformin increased extracellular ATP concentration by reduction of ectoATPase activity, decreased NAD(P)H oxidase activity and increased AMPK phosphorylation. A P2 receptor antagonist, suramin (300 ĀµM), prevented metformin action on NAD(P)H oxidase and AMPK phosphorylation. The data suggests a novel mechanism of metformin action, at least in podocytes. Metformin, which increases extracellular ATP concentration leads to activation of P2 receptors and consequent modulation of the podocytes' metabolism through AMPK and NAD(P)H oxidase which, in turn, may affect podocyte functioning

    Role of Klotho in Hyperglycemia:Its Levels and Effects on Fibroblast Growth Factor Receptors, Glycolysis, and Glomerular Filtration

    Get PDF
    Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN
    • ā€¦
    corecore